-
Notifications
You must be signed in to change notification settings - Fork 228
/
movi_def_worker.py
324 lines (272 loc) · 12.2 KB
/
movi_def_worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# Copyright 2024 The Kubric Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
"""
import logging
import bpy
import kubric as kb
from kubric.simulator import PyBullet
from kubric.renderer import Blender
import numpy as np
# --- Some configuration values
# the region in which to place objects [(min), (max)]
STATIC_SPAWN_REGION = [(-7, -7, 0), (7, 7, 10)]
DYNAMIC_SPAWN_REGION = [(-5, -5, 1), (5, 5, 5)]
VELOCITY_RANGE = [(-4., -4., 0.), (4., 4., 0.)]
# --- CLI arguments
parser = kb.ArgumentParser()
parser.add_argument("--objects_split", choices=["train", "test"],
default="train")
# Configuration for the objects of the scene
parser.add_argument("--min_num_static_objects", type=int, default=10,
help="minimum number of static (distractor) objects")
parser.add_argument("--max_num_static_objects", type=int, default=20,
help="maximum number of static (distractor) objects")
parser.add_argument("--min_num_dynamic_objects", type=int, default=1,
help="minimum number of dynamic (tossed) objects")
parser.add_argument("--max_num_dynamic_objects", type=int, default=3,
help="maximum number of dynamic (tossed) objects")
# Configuration for the floor and background
parser.add_argument("--floor_friction", type=float, default=0.3)
parser.add_argument("--floor_restitution", type=float, default=0.5)
parser.add_argument("--backgrounds_split", choices=["train", "test"],
default="train")
parser.add_argument("--camera", choices=["fixed_random", "linear_movement", "linear_movement_linear_lookat"],
default="fixed_random")
parser.add_argument("--max_camera_movement", type=float, default=4.0)
parser.add_argument("--max_motion_blur", type=float, default=0.0)
# Configuration for the source of the assets
parser.add_argument("--kubasic_assets", type=str,
default="gs://kubric-public/assets/KuBasic/KuBasic.json")
parser.add_argument("--hdri_assets", type=str,
default="gs://kubric-public/assets/HDRI_haven/HDRI_haven.json")
parser.add_argument("--gso_assets", type=str,
default="gs://kubric-public/assets/GSO/GSO.json")
parser.add_argument("--save_state", dest="save_state", action="store_true")
parser.set_defaults(save_state=False, frame_end=24, frame_rate=12,
resolution=256)
FLAGS = parser.parse_args()
# --- Common setups & resources
scene, rng, output_dir, scratch_dir = kb.setup(FLAGS)
motion_blur = rng.uniform(0, FLAGS.max_motion_blur)
if motion_blur > 0.0:
logging.info(f"Using motion blur strength {motion_blur}")
simulator = PyBullet(scene, scratch_dir)
renderer = Blender(scene, scratch_dir, use_denoising=True, samples_per_pixel=64,
motion_blur=motion_blur)
kubasic = kb.AssetSource.from_manifest(FLAGS.kubasic_assets)
gso = kb.AssetSource.from_manifest(FLAGS.gso_assets)
hdri_source = kb.AssetSource.from_manifest(FLAGS.hdri_assets)
# --- Populate the scene
# background HDRI
train_backgrounds, test_backgrounds = hdri_source.get_test_split(fraction=0.1)
if FLAGS.backgrounds_split == "train":
logging.info("Choosing one of the %d training backgrounds...", len(train_backgrounds))
hdri_id = rng.choice(train_backgrounds)
else:
logging.info("Choosing one of the %d held-out backgrounds...", len(test_backgrounds))
hdri_id = rng.choice(test_backgrounds)
background_hdri = hdri_source.create(asset_id=hdri_id)
#assert isinstance(background_hdri, kb.Texture)
logging.info("Using background %s", hdri_id)
scene.metadata["background"] = hdri_id
renderer._set_ambient_light_hdri(background_hdri.filename)
# Dome
dome = kubasic.create(asset_id="dome", name="dome",
friction=1.0,
restitution=0.0,
static=True, background=True)
assert isinstance(dome, kb.FileBasedObject)
scene += dome
dome_blender = dome.linked_objects[renderer]
texture_node = dome_blender.data.materials[0].node_tree.nodes["Image Texture"]
texture_node.image = bpy.data.images.load(background_hdri.filename)
def get_linear_camera_motion_start_end(
movement_speed: float,
inner_radius: float = 8.,
outer_radius: float = 12.,
z_offset: float = 0.1,
):
"""Sample a linear path which starts and ends within a half-sphere shell."""
while True:
camera_start = np.array(kb.sample_point_in_half_sphere_shell(inner_radius,
outer_radius,
z_offset))
direction = rng.rand(3) - 0.5
movement = direction / np.linalg.norm(direction) * movement_speed
camera_end = camera_start + movement
if (inner_radius <= np.linalg.norm(camera_end) <= outer_radius and
camera_end[2] > z_offset):
return camera_start, camera_end
def get_linear_lookat_motion_start_end(
inner_radius: float = 1.0,
outer_radius: float = 4.0,
):
"""Sample a linear path which goes through the workspace center."""
while True:
# Sample a point near the workspace center that the path travels through
camera_through = np.array(
kb.sample_point_in_half_sphere_shell(0.0, inner_radius, 0.0)
)
while True:
# Sample one endpoint of the trajectory
camera_start = np.array(
kb.sample_point_in_half_sphere_shell(0.0, outer_radius, 0.0)
)
if camera_start[-1] < inner_radius:
break
# Continue the trajectory beyond the point in the workspace center, so the
# final path passes through that point.
continuation = rng.rand(1) * 0.5
camera_end = camera_through + continuation * (camera_through - camera_start)
# Second point will probably be closer to the workspace center than the
# first point. Get extra augmentation by randomly swapping first and last.
if rng.rand(1)[0] < 0.5:
tmp = camera_start
camera_start = camera_end
camera_end = tmp
return camera_start, camera_end
# Camera
logging.info("Setting up the Camera...")
scene.camera = kb.PerspectiveCamera(focal_length=35., sensor_width=32)
if FLAGS.camera == "fixed_random":
scene.camera.position = kb.sample_point_in_half_sphere_shell(
inner_radius=7., outer_radius=9., offset=0.1)
scene.camera.look_at((0, 0, 0))
elif (
FLAGS.camera == "linear_movement"
or FLAGS.camera == "linear_movement_linear_lookat"
):
is_panning = FLAGS.camera == "linear_movement_linear_lookat"
camera_inner_radius = 6.0 if is_panning else 8.0
camera_start, camera_end = get_linear_camera_motion_start_end(
movement_speed=rng.uniform(low=0., high=FLAGS.max_camera_movement)
)
if is_panning:
lookat_start, lookat_end = get_linear_lookat_motion_start_end()
# linearly interpolate the camera position between these two points
# while keeping it focused on the center of the scene
# we start one frame early and end one frame late to ensure that
# forward and backward flow are still consistent for the last and first frames
for frame in range(FLAGS.frame_start - 1, FLAGS.frame_end + 2):
interp = ((frame - FLAGS.frame_start + 1) /
(FLAGS.frame_end - FLAGS.frame_start + 3))
scene.camera.position = (interp * np.array(camera_start) +
(1 - interp) * np.array(camera_end))
if is_panning:
scene.camera.look_at(
interp * np.array(lookat_start)
+ (1 - interp) * np.array(lookat_end)
)
else:
scene.camera.look_at((0, 0, 0))
scene.camera.keyframe_insert("position", frame)
scene.camera.keyframe_insert("quaternion", frame)
# ---- Object placement ----
train_split, test_split = gso.get_test_split(fraction=0.1)
if FLAGS.objects_split == "train":
logging.info("Choosing one of the %d training objects...", len(train_split))
active_split = train_split
else:
logging.info("Choosing one of the %d held-out objects...", len(test_split))
active_split = test_split
# add STATIC objects
num_static_objects = rng.randint(FLAGS.min_num_static_objects,
FLAGS.max_num_static_objects+1)
logging.info("Randomly placing %d static objects:", num_static_objects)
for i in range(num_static_objects):
obj = gso.create(asset_id=rng.choice(active_split))
assert isinstance(obj, kb.FileBasedObject)
scale = rng.uniform(0.75, 3.0)
obj.scale = scale / np.max(obj.bounds[1] - obj.bounds[0])
obj.metadata["scale"] = scale
scene += obj
kb.move_until_no_overlap(obj, simulator, spawn_region=STATIC_SPAWN_REGION,
rng=rng)
obj.friction = 1.0
obj.restitution = 0.0
obj.metadata["is_dynamic"] = False
logging.info(" Added %s at %s", obj.asset_id, obj.position)
logging.info("Running 100 frames of simulation to let static objects settle ...")
_, _ = simulator.run(frame_start=-100, frame_end=0)
# stop any objects that are still moving and reset friction / restitution
for obj in scene.foreground_assets:
if hasattr(obj, "velocity"):
obj.velocity = (0., 0., 0.)
obj.friction = 0.5
obj.restitution = 0.5
dome.friction = FLAGS.floor_friction
dome.restitution = FLAGS.floor_restitution
# Add DYNAMIC objects
num_dynamic_objects = rng.randint(FLAGS.min_num_dynamic_objects,
FLAGS.max_num_dynamic_objects+1)
logging.info("Randomly placing %d dynamic objects:", num_dynamic_objects)
for i in range(num_dynamic_objects):
obj = gso.create(asset_id=rng.choice(active_split))
assert isinstance(obj, kb.FileBasedObject)
scale = rng.uniform(0.75, 3.0)
obj.scale = scale / np.max(obj.bounds[1] - obj.bounds[0])
obj.metadata["scale"] = scale
scene += obj
kb.move_until_no_overlap(obj, simulator, spawn_region=DYNAMIC_SPAWN_REGION,
rng=rng)
obj.velocity = (rng.uniform(*VELOCITY_RANGE) -
[obj.position[0], obj.position[1], 0])
obj.metadata["is_dynamic"] = True
logging.info(" Added %s at %s", obj.asset_id, obj.position)
if FLAGS.save_state:
logging.info("Saving the simulator state to '%s' prior to the simulation.",
output_dir / "scene.bullet")
simulator.save_state(output_dir / "scene.bullet")
# Run dynamic objects simulation
logging.info("Running the simulation ...")
animation, collisions = simulator.run(frame_start=0,
frame_end=scene.frame_end+1)
# --- Rendering
if FLAGS.save_state:
logging.info("Saving the renderer state to '%s' ",
output_dir / "scene.blend")
renderer.save_state(output_dir / "scene.blend")
logging.info("Rendering the scene ...")
data_stack = renderer.render()
# --- Postprocessing
kb.compute_visibility(data_stack["segmentation"], scene.assets)
visible_foreground_assets = [asset for asset in scene.foreground_assets
if np.max(asset.metadata["visibility"]) > 0]
visible_foreground_assets = sorted( # sort assets by their visibility
visible_foreground_assets,
key=lambda asset: np.sum(asset.metadata["visibility"]),
reverse=True)
data_stack["segmentation"] = kb.adjust_segmentation_idxs(
data_stack["segmentation"],
scene.assets,
visible_foreground_assets)
scene.metadata["num_instances"] = len(visible_foreground_assets)
# Save to image files
kb.write_image_dict(data_stack, output_dir)
kb.post_processing.compute_bboxes(data_stack["segmentation"],
visible_foreground_assets)
# --- Metadata
logging.info("Collecting and storing metadata for each object.")
kb.write_json(filename=output_dir / "metadata.json", data={
"flags": vars(FLAGS),
"metadata": kb.get_scene_metadata(scene),
"camera": kb.get_camera_info(scene.camera),
"instances": kb.get_instance_info(scene, visible_foreground_assets),
})
kb.write_json(filename=output_dir / "events.json", data={
"collisions": kb.process_collisions(
collisions, scene, assets_subset=visible_foreground_assets),
})
kb.done()