Source codes for reproducing "Grasp2Vec: Learning Object Representations from Self-Supervised Grasping".
Links
Eric Jang*1, Coline Devin*2, Vincent Vanhoucke1, Sergey Levine12
*Equal Contribution, 1 Google Brain, 2UC Berkeley
Data is not included in this repository, so you will have to provide your own training/eval datasets of TFRecords. The Grasp2Vec T2R model attempts to parse the following Feature spec from the data, before cropping and resizing the parsed images:
tspec.pregrasp_image = TensorSpec(shape=(512, 640, 3),
dtype=tf.uint8, name='image', data_format='jpeg')
tspec.postgrasp_image = TensorSpec(
shape=(512, 640, 3), dtype=tf.uint8, name='postgrasp_image',
data_format='jpeg')
tspec.goal_image = TensorSpec(
shape=(512, 640, 3), dtype=tf.uint8, name='present_image',
data_format='jpeg')
Note that image
, postgrasp_image
, present_image
are the names of features
stored in the TFExample feature map.
python3 -m tensor2robot.bin.run_t2r_trainer --logtostderr \
--gin_configs="tensor2robot/research/grasp2vec/configs/train_grasp2vec.gin" \
--gin_bindings="train_eval_model.model_dir='/tmp/grasp2vec/'" \
--gin_bindings="TRAIN_DATA='/path/to/your/data/train*' \
--gin_bindings="EVAL_DATA='/path/to/your/data/val*'"
Tensorboard will show heatmap localization visualization summaries as shown in the paper.