Skip to content

Files

Latest commit

3e678e3 · Apr 2, 2024

History

History

efficientdet

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EfficientDet

Paper Open In Colab TensorFlow Hub

[1] Mingxing Tan, Ruoming Pang, Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. CVPR 2020. Arxiv link: https://arxiv.org/abs/1911.09070

Updates:

  • Jul19/2021: Added Nvidia TensorRT script/instruction link
  • May10/2021: Added EfficientDet-lite checkpoints (by Yuqi and TFLite team)
  • Mar25/2021: Added Det-AdvProp model checkpoints (see this page).
  • Jul20/2020: Added keras/TF2 and new SOTA D7x: 55.1mAP with 153ms.
  • Apr22/2020: Sped up end-to-end latency: D0 has up to >200 FPS throughput on Tesla V100.
  • Apr1/2020: Updated results for test-dev and added EfficientDet-D7.
  • Mar26/2020: Fixed a few bugs and updated all checkpoints/results.
  • Mar24/2020: Added tutorial with visualization and coco eval.
  • Mar13/2020: Released the initial code and models.

Quick start tutorial: tutorial.ipynb

Quick install dependencies: pip install -r requirements.txt

1. About EfficientDet Models

EfficientDets are a family of object detection models, which achieve state-of-the-art 55.1mAP on COCO test-dev, yet being 4x - 9x smaller and using 13x - 42x fewer FLOPs than previous detectors. Our models also run 2x - 4x faster on GPU, and 5x - 11x faster on CPU than other detectors.

EfficientDets are developed based on the advanced backbone, a new BiFPN, and a new scaling technique:

  • Backbone: we employ EfficientNets as our backbone networks.
  • BiFPN: we propose BiFPN, a bi-directional feature network enhanced with fast normalization, which enables easy and fast feature fusion.
  • Scaling: we use a single compound scaling factor to govern the depth, width, and resolution for all backbone, feature & prediction networks.

Our model family starts from EfficientDet-D0, which has comparable accuracy as YOLOv3. Then we scale up this baseline model using our compound scaling method to obtain a list of detection models EfficientDet-D1 to D6, with different trade-offs between accuracy and model complexity.

** For simplicity, we compare the whole detectors here. For more comparison on FPN/NAS-FPN/BiFPN, please see Table 4 of our paper.

2. Pretrained EfficientDet Checkpoints

We have provided a list of EfficientDet checkpoints and results as follows:

Model APtest AP50 AP75 APS APM APL APval #params #FLOPs
EfficientDet-D0 (h5, ckpt, val, test-dev) 34.6 53.0 37.1 12.4 39.0 52.7 34.3 3.9M 2.54B
EfficientDet-D1 (h5, ckpt, val, test-dev) 40.5 59.1 43.7 18.3 45.0 57.5 40.2 6.6M 6.10B
EfficientDet-D2 (h5, ckpt, val, test-dev) 43.9 62.7 47.6 22.9 48.1 59.5 43.5 8.1M 11.0B
EfficientDet-D3 (h5, ckpt, val, test-dev) 47.2 65.9 51.2 27.2 51.0 62.1 46.8 12.0M 24.9B
EfficientDet-D4 (h5, ckpt, val, test-dev) 49.7 68.4 53.9 30.7 53.2 63.2 49.3 20.7M 55.2B
EfficientDet-D5 (h5, ckpt, val, test-dev) 51.5 70.5 56.1 33.9 54.7 64.1 51.2 33.7M 130B
EfficientDet-D6 (h5, ckpt, val, test-dev) 52.6 71.5 57.2 34.9 56.0 65.4 52.1 51.9M 226B
EfficientDet-D7 (h5, ckpt, val, test-dev) 53.7 72.4 58.4 35.8 57.0 66.3 53.4 51.9M 325B
EfficientDet-D7x (h5, ckpt, val, test-dev) 55.1 74.3 59.9 37.2 57.9 68.0 54.4 77.0M 410B

val denotes validation results, test-dev denotes test-dev2017 results. APval is for validation accuracy, all other AP results in the table are for COCO test-dev2017. All accuracy numbers are for single-model single-scale without ensemble or test-time augmentation. EfficientDet-D0 to D6 are trained for 300 epochs and D7/D7x are trained for 600 epochs.

For more accurate and robust EfficientDet, please see this page, which contains a list of models trained with Det-AdvProp + AutoAugment (AA) described in this paper. The obatined model is not only more accurate on clean images, but also much more robust against various corruptions and domain shift.

On single Tesla V100 without using TensorRT, our end-to-end latency and throughput are:

Model mAP batch1 latency batch1 throughput batch8 throughput
EfficientDet-D0 34.6 10.2ms 97 fps 209 fps
EfficientDet-D1 40.5 13.5ms 74 fps 140 fps
EfficientDet-D2 43.0 17.7ms 57 fps 97 fps
EfficientDet-D3 47.5 28.0ms 36 fps 58 fps
EfficientDet-D4 49.7 42.8ms 23 fps 35 fps
EfficientDet-D5 51.5 72.5ms 14 fps 18 fps
EfficientDet-D6 52.6 92.8ms 11 fps - fps
EfficientDet-D7 53.7 122ms 8.2 fps - fps
EfficientDet-D7x 55.1 153ms 6.5 fps - fps

** FPS means frames per second (or images/second).

** EfficientDet can be significantly sped up with TensorRT: link

In addition, the following table includes a list of models trained with fixed 640x640 image sizes (see appendix of this paper):

Model mAP Latency
D2(640) h5, ckpt 41.7 14.8ms
D3(640) h5, ckpt 44.0 18.7ms
D4(640) h5, ckpt 45.7 21.7ms
D5(640) h5, ckpt 46.6 26.6ms
D6(640) h5, ckpt 47.9 33.8ms

We have also provided a list of mobile-size lite models:

Model mAP (float) Quantized mAP (int8) Prameters Mobile latency
EfficientDet-lite0, ckpt 26.41 26.10 3.2M 36ms
EfficientDet-lite1, ckpt 31.50 31.12 4.2M 49ms
EfficientDet-lite2, ckpt 35.06 34.69 5.3M 69ms
EfficientDet-lite3, ckpt 38.77 38.42 8.4M 116ms
EfficientDet-lite3x, ckpt 42.64 41.87 9.3M 208ms
EfficientDet-lite4, ckpt 43.18 42.83 15.1M 260ms

3. Export SavedModel, frozen graph, tensort models, or tflite.

Run the following command line to export models:

!rm  -rf savedmodeldir
!python model_inspect.py --runmode=saved_model --model_name=efficientdet-d0 \
  --ckpt_path=efficientdet-d0 --saved_model_dir=savedmodeldir \
  --tensorrt=FP32  --tflite_path=efficientdet-d0.tflite \
  --hparams=voc_config.yaml

Then you will get:

  • saved model under savedmodeldir/
  • frozen graph with name savedmodeldir/efficientdet-d0_frozen.pb
  • TensorRT saved model under savedmodeldir/tensorrt_fp32/
  • tflite file with name efficientdet-d0.tflite

Notably, --tflite_path only works after 2.3.0-dev20200521 , --ckpt_path=xx/archive is the folder for exporting the best model.

4. Benchmark model latency.

There are two types of latency: network latency and end-to-end latency.

(1) To measure the network latency (from the first conv to the last class/box prediction output), use the following command:

!python model_inspect.py --runmode=bm --model_name=efficientdet-d0

add --hparams="mixed_precision=True" if running on V100.

On single Tesla V100 without TensorRT, our D0 network (no pre/post-processing) has 134 FPS (frame per second) for batch size 1, and 238 FPS for batch size 8.

(2) To measure the end-to-end latency (from the input image to the final rendered new image, including: image preprocessing, network, postprocessing and NMS), use the following command:

!rm  -rf /tmp/benchmark/
!python model_inspect.py --runmode=saved_model --model_name=efficientdet-d0 \
  --ckpt_path=efficientdet-d0 --saved_model_dir=/tmp/benchmark/ \
  --hparams=mixed_precision=true

!python model_inspect.py --runmode=saved_model_benchmark \
  --saved_model_dir=/tmp/benchmark/efficientdet-d0_frozen.pb \
  --model_name=efficientdet-d0  --input_image=testdata/img1.jpg  \
  --output_image_dir=/tmp/

5. Inference for images.

# Step0: download model and testing image.
!export MODEL=efficientdet-d0
!export CKPT_PATH=efficientdet-d0
!wget https://storage.googleapis.com/cloud-tpu-checkpoints/efficientdet/coco/${MODEL}.tar.gz
!wget https://user-images.githubusercontent.com/11736571/77320690-099af300-6d37-11ea-9d86-24f14dc2d540.png -O img.png
!tar xf ${MODEL}.tar.gz

# Step 1: export saved model.
!python model_inspect.py --runmode=saved_model \
  --model_name=efficientdet-d0 --ckpt_path=efficientdet-d0 \
  --hparams="image_size=1920x1280" \
  --saved_model_dir=/tmp/saved_model

# Step 2: do inference with saved model.
!python model_inspect.py --runmode=saved_model_infer \
  --model_name=efficientdet-d0  \
  --saved_model_dir=/tmp/saved_model  \
  --input_image=img.png --output_image_dir=/tmp/
# you can visualize the output /tmp/0.jpg

Alternatively, if you want to do inference using frozen graph instead of saved model, you can run

# Step 0 and 1 is the same as before.
# Step 2: do inference with frozen graph.
!python model_inspect.py --runmode=saved_model_infer \
  --model_name=efficientdet-d0  \
  --saved_model_dir=/tmp/saved_model/efficientdet-d0_frozen.pb  \
  --input_image=img.png --output_image_dir=/tmp/

Lastly, if you only have one image and just want to run a quick test, you can also run the following command (it is slow because it needs to construct the graph from scratch):

# Run inference for a single image.
!python model_inspect.py --runmode=infer --model_name=$MODEL \
  --hparams="image_size=1920x1280"  --max_boxes_to_draw=100   --min_score_thresh=0.4 \
  --ckpt_path=$CKPT_PATH --input_image=img.png --output_image_dir=/tmp
# you can visualize the output /tmp/0.jpg

Here is an example of EfficientDet-D0 visualization: more on tutorial

6. Inference for videos.

You can run inference for a video and show the results online:

# step 0: download the example video.
!wget https://storage.googleapis.com/cloud-tpu-checkpoints/efficientdet/data/video480p.mov -O input.mov

# step 1: export saved model.
!python model_inspect.py --runmode=saved_model \
  --model_name=efficientdet-d0 --ckpt_path=efficientdet-d0 \
  --saved_model_dir=/tmp/savedmodel --hparams=voc_config.yaml

# step 2: inference video using saved_model_video.
!python model_inspect.py --runmode=saved_model_video \
  --model_name=efficientdet-d0 \
  --saved_model_dir=/tmp/savedmodel --input_video=input.mov

# alternative step 2: inference video and save the result.
!python model_inspect.py --runmode=saved_model_video \
  --model_name=efficientdet-d0   \
  --saved_model_dir=/tmp/savedmodel --input_video=input.mov  \
  --output_video=output.mov

7. Eval on COCO 2017 val or test-dev.

// Download coco data.
!wget http://images.cocodataset.org/zips/val2017.zip
!wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
!unzip val2017.zip
!unzip annotations_trainval2017.zip

// convert coco data to tfrecord.
!mkdir tfrecord
!PYTHONPATH=".:$PYTHONPATH"  python dataset/create_coco_tfrecord.py \
    --image_dir=val2017 \
    --object_annotations_file=annotations/instances_val2017.json \
    --output_file_prefix=tfrecord/val \
    --num_shards=32

// Run eval.
!python main.py --mode=eval  \
    --model_name=${MODEL}  --model_dir=${CKPT_PATH}  \
    --val_file_pattern=tfrecord/val*  \
    --val_json_file=annotations/instances_val2017.json

You can also run eval on test-dev set with the following command:

!wget http://images.cocodataset.org/zips/test2017.zip
!unzip -q test2017.zip
!wget http://images.cocodataset.org/annotations/image_info_test2017.zip
!unzip image_info_test2017.zip

!mkdir tfrecord
!PYTHONPATH=".:$PYTHONPATH"  python dataset/create_coco_tfrecord.py \
      --image_dir=test2017 \
      --image_info_file=annotations/image_info_test-dev2017.json \
      --output_file_prefix=tfrecord/testdev \
      --num_shards=32

# Eval on test-dev: testdev_dir must be set.
# Also, test-dev has 20288 images rather than val 5000 images.
!python main.py --mode=eval  \
    --model_name=${MODEL}  --model_dir=${CKPT_PATH}  \
    --val_file_pattern=tfrecord/testdev*  \
    --testdev_dir='testdev_output' --eval_samples=20288
# Now you can submit testdev_output/detections_test-dev2017_test_results.json to
# coco server: https://competitions.codalab.org/competitions/20794#participate

8. Finetune on PASCAL VOC 2012 with detector COCO ckpt.

Download data and checkpoints.

# Download and convert pascal data.
!wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
!tar xf VOCtrainval_11-May-2012.tar
!mkdir tfrecord
!PYTHONPATH=".:$PYTHONPATH"  python dataset/create_pascal_tfrecord.py  \
    --data_dir=VOCdevkit --year=VOC2012  --output_path=tfrecord/pascal

# Download backbone checkopints.
!wget https://storage.googleapis.com/cloud-tpu-checkpoints/efficientdet/coco/efficientdet-d0.tar.gz
!tar xf efficientdet-d0.tar.gz

Create a config file for the PASCAL VOC dataset called voc_config.yaml and put this in it.

  num_classes: 21
  lr_warmup_init: 0.08
  learning_rate: 0.8
  var_freeze_expr: '(efficientnet|fpn_cells|resample_p6)'
  label_map: {1: aeroplane, 2: bicycle, 3: bird, 4: boat, 5: bottle, 6: bus, 7: car, 8: cat, 9: chair, 10: cow, 11: diningtable, 12: dog, 13: horse, 14: motorbike, 15: person, 16: pottedplant, 17: sheep, 18: sofa, 19: train, 20: tvmonitor}

Finetune needs to use --ckpt rather than --backbone_ckpt.

!python main.py --mode=train_and_eval \
    --train_file_pattern=tfrecord/pascal*.tfrecord \
    --val_file_pattern=tfrecord/pascal*.tfrecord \
    --model_name=efficientdet-d0 \
    --model_dir=/tmp/efficientdet-d0-finetune  \
    --ckpt=efficientdet-d0  \
    --train_batch_size=64 \
    --eval_batch_size=64 \
    --num_examples_per_epoch=5717 --num_epochs=50  \
    --hparams=voc_config.yaml --val_json_file=tfrecord/json_pascal.json

If you want to continue to train the model, simply re-run the above command because the num_epochs is a maximum number of epochs. For example, to reproduce the result of efficientdet-d0, set --num_epochs=300 then run the command multiple times until the training is finished.

If you want to do inference for custom data, you can run

# Setting hparams-flag is needed sometimes.
!python model_inspect.py --runmode=infer \
  --model_name=efficientdet-d0   --ckpt_path=efficientdet-d0 \
  --hparams=voc_config.yaml  \
  --input_image=img.png --output_image_dir=/tmp/

You should check more details of runmode which is written in caption-4.

9. Training on single node GPUs.

Create a config file for the PASCAL VOC dataset called voc_config.yaml and put this in it.

  num_classes: 21
  var_freeze_expr: '(efficientnet|fpn_cells|resample_p6)'
  label_map: {1: aeroplane, 2: bicycle, 3: bird, 4: boat, 5: bottle, 6: bus, 7: car, 8: cat, 9: chair, 10: cow, 11: diningtable, 12: dog, 13: horse, 14: motorbike, 15: person, 16: pottedplant, 17: sheep, 18: sofa, 19: train, 20: tvmonitor}

Download efficientdet coco checkpoint.

!wget https://storage.googleapis.com/cloud-tpu-checkpoints/efficientdet/coco/efficientdet-d0.tar.gz
!tar xf efficientdet-d0.tar.gz

Finetune needs to use --ckpt rather than --backbone_ckpt.

python main.py --mode=train \
    --train_file_pattern=tfrecord/pascal*.tfrecord \
    --val_file_pattern=tfrecord/pascal*.tfrecord \
    --model_name=efficientdet-d0 \
    --model_dir=/tmp/efficientdet-d0-finetune  \
    --ckpt=efficientdet-d0  \
    --train_batch_size=64 \
    --eval_batch_size=64 \
    --num_examples_per_epoch=5717 --num_epochs=50  \
    --hparams=voc_config.yaml
    --strategy=gpus

If you want to do inference for custom data, you can run

# Setting hparams-flag is needed sometimes.
!python model_inspect.py --runmode=infer \
  --model_name=efficientdet-d0   --ckpt_path=efficientdet-d0 \
  --hparams=voc_config.yaml  \
  --input_image=img.png --output_image_dir=/tmp/

You should check more details of runmode which is written in caption-4.

10. Training EfficientDets on TPUs.

To train this model on Cloud TPU, you will need:

  • A GCE VM instance with an associated Cloud TPU resource.
  • A GCS bucket to store your training checkpoints (the "model directory").
  • Install latest TensorFlow for both GCE VM and Cloud.

Then train the model:

!export PYTHONPATH="$PYTHONPATH:/path/to/models"
!python main.py --tpu=TPU_NAME --train_file_pattern=DATA_DIR/*.tfrecord --model_dir=MODEL_DIR --strategy=tpu

# TPU_NAME is the name of the TPU node, the same name that appears when you run gcloud compute tpus list, or ctpu ls.
# MODEL_DIR is a GCS location (a URL starting with gs:// where both the GCE VM and the associated Cloud TPU have write access.
# DATA_DIR is a GCS location to which both the GCE VM and associated Cloud TPU have read access.

For more instructions about training on TPUs, please refer to the following tutorials:

11. Reducing Memory Usage when Training EfficientDets on GPU.

EfficientDets use a lot of GPU memory for a few reasons:

  • Large input resolution: because resolution is one of the scaling dimension, our resolution tends to be higher, which significantly increase activations (although no parameter increase).
  • Large internal activations for backbone: our backbone uses a relatively large expansion ratio (6), causing the large expanded activations.
  • Deep BiFPN: our BiFPN has multiple top-down and bottom-up paths, which leads to a lot of intermediate memory usage during training.

To train this model on GPU with low memory there is an experimental option grad_checkpoint.

Check these links for a high-level idea of what gradient checkpointing is doing:

  1. https://medium.com/tensorflow/fitting-larger-networks-into-memory-583e3c758ff9

grad_checkpoint: True

If set to True, keras model uses tf.recompute_grad to achieve gradient checkpoints.

Testing shows that:

  • It also allows to train a d6 network with batch size of 2 by main.py on a 11Gb (1080Ti) GPU

12. Visualize TF-Records.

You can visualize tf-records with following commands:

To visualize training tfrecords with input dataloader use.

python dataset/inspect_tfrecords.py --file_pattern dataset/sample.record\ 
--model_name "efficientdet-d0" --samples 10\ 
--save_samples_dir train_samples/ --hparams="label_map={1:'label1'}, autoaugmentation_policy=v3"

To visualize evaluation tfrecords use.

python dataset/inspect_tfrecords.py --file_pattern dataset/sample.record\ 
--model_name "efficientdet-d0" --samples 10\ 
--save_samples_dir train_samples/  -eval\
-hparams="label_map={1:'label1'}"

  • samples: random samples to visualize.
  • model_name: model name will be used to get image_size.
  • save_samples_dir: save dir.
  • eval: flag for eval data.

NOTE: this is not an official Google product.