In this case study, we describe applying DeepVariant to Oxford Nanopore R10.4.1
simplex reads. Then we assess the quality of the DeepVariant variant calls with
hap.py
.
To make it faster to go over this case study, we run only on chromosome 20.
The dataset used in this case-study has following attributes:
Sample: HG003
Region: Chr20
Chemistry: ONT R10.4.1
Coverage: 80x
Model note:
-
The model is trained with Guppy 6+ "SUP" Simplex and Dorado v0.1.1 Duplex reads.
-
The model is trained on both Ultra-long and sheared reads with varying read N50 and coverage.
In this case-study, we will use Docker to run DeepVariant for variant calling and hap.py for benchmarking.
If you want to run on GPU machines, or use Singularity
instead of Docker
,
please follow Quick Start documentation.
BASE="${HOME}/ont-case-study"
# Set up input and output directory data
INPUT_DIR="${BASE}/input/data"
OUTPUT_DIR="${BASE}/output"
## Create local directory structure
mkdir -p "${INPUT_DIR}"
mkdir -p "${OUTPUT_DIR}"
# Download reference to input directory
FTPDIR=ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids
curl ${FTPDIR}/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz | gunzip > ${INPUT_DIR}/GRCh38_no_alt_analysis_set.fasta
curl ${FTPDIR}/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.fai > ${INPUT_DIR}/GRCh38_no_alt_analysis_set.fasta.fai
# Download HG003 Ultra-long chr20 bam file to input directory
HTTPDIR=https://storage.googleapis.com/deepvariant/ont-case-study-testdata
curl ${HTTPDIR}/HG003_R104_sup_merged.80x.chr20.bam > ${INPUT_DIR}/HG003_R104_sup_merged.80x.chr20.bam
curl ${HTTPDIR}/HG003_R104_sup_merged.80x.chr20.bam.bai > ${INPUT_DIR}/HG003_R104_sup_merged.80x.chr20.bam.bai
# Set up input variables
REF="GRCh38_no_alt_analysis_set.fasta"
BAM="HG003_R104_sup_merged.80x.chr20.bam"
THREADS=$(nproc)
REGION="chr20"
# Set up output variable
OUTPUT_VCF="HG003_UL_R1041_Guppy6_sup_2_GRCh38.chr20.output.vcf.gz"
OUTPUT_GVCF="HG003_UL_R1041_Guppy6_sup_2_GRCh38.output.g.vcf.gz"
INTERMEDIATE_DIRECTORY="intermediate_results_dir"
mkdir -p "${OUTPUT_DIR}/${INTERMEDIATE_DIRECTORY}"
We will run DeepVariant from docker using the run_deepvariant
script.
BIN_VERSION="1.6.1"
sudo docker run \
-v "${INPUT_DIR}":"${INPUT_DIR}" \
-v "${OUTPUT_DIR}":"${OUTPUT_DIR}" \
google/deepvariant:"${BIN_VERSION}" \
/opt/deepvariant/bin/run_deepvariant \
--model_type ONT_R104 \
--ref "${INPUT_DIR}/${REF}" \
--reads "${INPUT_DIR}/${BAM}" \
--output_vcf "${OUTPUT_DIR}/${OUTPUT_VCF}" \
--output_gvcf "${OUTPUT_DIR}/${OUTPUT_GVCF}" \
--num_shards "${THREADS}" \
--regions "${REGION}" \
--intermediate_results_dir "${OUTPUT_DIR}/${INTERMEDIATE_DIRECTORY}"
By specifying --model_type ONT_R104
, you'll be using a model that is best
suited for Oxford Nanopore R10.4.1 chemistry Simplex and Duplex reads.
NOTE: If you want to run each of the steps separately, add --dry_run=true
to the command above to figure out what flags you need in each step. Based on
the different model types, different flags are needed in the make_examples
step.
--intermediate_results_dir
flag is optional. By specifying it, the
intermediate outputs of make_examples
and call_variants
stages can be found
in the directory. After the command, you can find these files in the directory:
call_variants_output.tfrecord.gz
gvcf.tfrecord-?????-of-?????.gz
make_examples.tfrecord-?????-of-?????.gz
We will use Genome-in-a-Bottle (GIAB) dataset to evaluate the performance of DeepVariant.
We will benchmark our variant calls against v4.2.1 of the Genome in a Bottle small variant benchmarks for HG003.
FTPDIR=ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003_NA24149_father/NISTv4.2.1/GRCh38
curl ${FTPDIR}/HG003_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed > ${INPUT_DIR}/HG003_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed
curl ${FTPDIR}/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz > ${INPUT_DIR}/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz
curl ${FTPDIR}/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz.tbi > ${INPUT_DIR}/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz.tbi
TRUTH_VCF="HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz"
TRUTH_BED="HG003_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed"
sudo docker pull jmcdani20/hap.py:v0.3.12
sudo docker run \
-v "${INPUT_DIR}":"${INPUT_DIR}" \
-v "${OUTPUT_DIR}":"${OUTPUT_DIR}" \
-v "${PWD}/happy:/happy" \
jmcdani20/hap.py:v0.3.12 /opt/hap.py/bin/hap.py \
"${INPUT_DIR}/${TRUTH_VCF}" \
"${OUTPUT_DIR}/${OUTPUT_VCF}" \
-f "${INPUT_DIR}/${TRUTH_BED}" \
-r "${INPUT_DIR}/${REF}" \
-o "${OUTPUT_DIR}/hg003.ul.r104.ont.chr20.happy.output" \
--engine=vcfeval \
--pass-only \
-l "${REGION}"
Output:
Benchmarking Summary:
Type Filter TRUTH.TOTAL TRUTH.TP TRUTH.FN QUERY.TOTAL QUERY.FP QUERY.UNK FP.gt FP.al METRIC.Recall METRIC.Precision METRIC.Frac_NA METRIC.F1_Score TRUTH.TOTAL.TiTv_ratio QUERY.TOTAL.TiTv_ratio TRUTH.TOTAL.het_hom_ratio QUERY.TOTAL.het_hom_ratio
INDEL ALL 10628 9165 1463 18460 934 8010 432 339 0.862345 0.910622 0.433911 0.885826 NaN NaN 1.748961 2.129371
INDEL PASS 10628 9165 1463 18460 934 8010 432 339 0.862345 0.910622 0.433911 0.885826 NaN NaN 1.748961 2.129371
SNP ALL 70166 69925 241 91027 151 20935 82 29 0.996565 0.997846 0.229987 0.997205 2.296566 1.944646 1.883951 1.843331
SNP PASS 70166 69925 241 91027 151 20935 82 29 0.996565 0.997846 0.229987 0.997205 2.296566 1.944646 1.883951 1.843331
For providing analysis results and expertise, we are thankful to:
- Karen Miga, Brandy McNulty, Jean Monlong, Benedict Paten from UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA.
- Miten Jain from Department of Bioengineering, Department of Physics, Northeastern University, Boston, MA.