This repository has been archived by the owner on Aug 13, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
11.5.3.js
160 lines (133 loc) · 10.6 KB
/
11.5.3.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
/* The contents of this file are subject to the Netscape Public
* License Version 1.1 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.mozilla.org/NPL/
*
* Software distributed under the License is distributed on an "AS
* IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
* implied. See the License for the specific language governing
* rights and limitations under the License.
*
* The Original Code is Mozilla Communicator client code, released March
* 31, 1998.
*
* The Initial Developer of the Original Code is Netscape Communications
* Corporation. Portions created by Netscape are
* Copyright (C) 1998 Netscape Communications Corporation. All
* Rights Reserved.
*
* Contributor(s):
*
*/
/**
File Name: 11.5.3.js
ECMA Section: 11.5.3 Applying the % operator
Description:
The binary % operator is said to yield the remainder of its operands from
an implied division; the left operand is the dividend and the right operand
is the divisor. In C and C++, the remainder operator accepts only integral
operands, but in ECMAScript, it also accepts floating-point operands.
The result of a floating-point remainder operation as computed by the %
operator is not the same as the "remainder" operation defined by IEEE 754.
The IEEE 754 "remainder" operation computes the remainder from a rounding
division, not a truncating division, and so its behavior is not analogous
to that of the usual integer remainder operator. Instead the ECMAScript
language defines % on floating-point operations to behave in a manner
analogous to that of the Java integer remainder operator; this may be
compared with the C library function fmod.
The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic:
If either operand is NaN, the result is NaN.
The sign of the result equals the sign of the dividend.
If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
If the dividend is finite and the divisor is an infinity, the result equals the dividend.
If the dividend is a zero and the divisor is finite, the result is the same as the dividend.
In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
possible without exceeding the magnitude of the true mathematical quotient of n and d.
Author: [email protected]
Date: 12 november 1997
*/
var SECTION = "11.5.3";
var VERSION = "ECMA_1";
startTest();
var testcases = getTestCases();
var BUGNUMBER="111202";
writeHeaderToLog( SECTION + " Applying the % operator");
test();
function test() {
for ( tc=0; tc < testcases.length; tc++ ) {
testcases[tc].passed = writeTestCaseResult(
testcases[tc].expect,
testcases[tc].actual,
testcases[tc].description +" = "+
testcases[tc].actual );
testcases[tc].reason += ( testcases[tc].passed ) ? "" : "wrong value ";
}
stopTest();
return ( testcases );
}
function getTestCases() {
var array = new Array();
var item = 0;
// if either operand is NaN, the result is NaN.
array[item++] = new TestCase( SECTION, "Number.NaN % Number.NaN", Number.NaN, Number.NaN % Number.NaN );
array[item++] = new TestCase( SECTION, "Number.NaN % 1", Number.NaN, Number.NaN % 1 );
array[item++] = new TestCase( SECTION, "1 % Number.NaN", Number.NaN, 1 % Number.NaN );
array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NaN", Number.NaN, Number.POSITIVE_INFINITY % Number.NaN );
array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NaN", Number.NaN, Number.NEGATIVE_INFINITY % Number.NaN );
// If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
// dividend is an infinity
array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY );
array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY );
array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY );
array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY );
array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % 0", Number.NaN, Number.POSITIVE_INFINITY % 0 );
array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 0", Number.NaN, Number.NEGATIVE_INFINITY % 0 );
array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % -0", Number.NaN, Number.POSITIVE_INFINITY % -0 );
array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -0", Number.NaN, Number.NEGATIVE_INFINITY % -0 );
array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 1 ", Number.NaN, Number.NEGATIVE_INFINITY % 1 );
array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -1 ", Number.NaN, Number.NEGATIVE_INFINITY % -1 );
array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % 1 ", Number.NaN, Number.POSITIVE_INFINITY % 1 );
array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % -1 ", Number.NaN, Number.POSITIVE_INFINITY % -1 );
array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % Number.MAX_VALUE );
array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % -Number.MAX_VALUE );
array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % Number.MAX_VALUE );
array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % -Number.MAX_VALUE );
// divisor is 0
array[item++] = new TestCase( SECTION, "0 % -0", Number.NaN, 0 % -0 );
array[item++] = new TestCase( SECTION, "-0 % 0", Number.NaN, -0 % 0 );
array[item++] = new TestCase( SECTION, "-0 % -0", Number.NaN, -0 % -0 );
array[item++] = new TestCase( SECTION, "0 % 0", Number.NaN, 0 % 0 );
array[item++] = new TestCase( SECTION, "1 % 0", Number.NaN, 1%0 );
array[item++] = new TestCase( SECTION, "1 % -0", Number.NaN, 1%-0 );
array[item++] = new TestCase( SECTION, "-1 % 0", Number.NaN, -1%0 );
array[item++] = new TestCase( SECTION, "-1 % -0", Number.NaN, -1%-0 );
array[item++] = new TestCase( SECTION, "Number.MAX_VALUE % 0", Number.NaN, Number.MAX_VALUE%0 );
array[item++] = new TestCase( SECTION, "Number.MAX_VALUE % -0", Number.NaN, Number.MAX_VALUE%-0 );
array[item++] = new TestCase( SECTION, "-Number.MAX_VALUE % 0", Number.NaN, -Number.MAX_VALUE%0 );
array[item++] = new TestCase( SECTION, "-Number.MAX_VALUE % -0", Number.NaN, -Number.MAX_VALUE%-0 );
// If the dividend is finite and the divisor is an infinity, the result equals the dividend.
array[item++] = new TestCase( SECTION, "1 % Number.NEGATIVE_INFINITY", 1, 1 % Number.NEGATIVE_INFINITY );
array[item++] = new TestCase( SECTION, "1 % Number.POSITIVE_INFINITY", 1, 1 % Number.POSITIVE_INFINITY );
array[item++] = new TestCase( SECTION, "-1 % Number.POSITIVE_INFINITY", -1, -1 % Number.POSITIVE_INFINITY );
array[item++] = new TestCase( SECTION, "-1 % Number.NEGATIVE_INFINITY", -1, -1 % Number.NEGATIVE_INFINITY );
array[item++] = new TestCase( SECTION, "Number.MAX_VALUE % Number.NEGATIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.NEGATIVE_INFINITY );
array[item++] = new TestCase( SECTION, "Number.MAX_VALUE % Number.POSITIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.POSITIVE_INFINITY );
array[item++] = new TestCase( SECTION, "-Number.MAX_VALUE % Number.POSITIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.POSITIVE_INFINITY );
array[item++] = new TestCase( SECTION, "-Number.MAX_VALUE % Number.NEGATIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.NEGATIVE_INFINITY );
array[item++] = new TestCase( SECTION, "0 % Number.POSITIVE_INFINITY", 0, 0 % Number.POSITIVE_INFINITY );
array[item++] = new TestCase( SECTION, "0 % Number.NEGATIVE_INFINITY", 0, 0 % Number.NEGATIVE_INFINITY );
array[item++] = new TestCase( SECTION, "-0 % Number.POSITIVE_INFINITY", -0, -0 % Number.POSITIVE_INFINITY );
array[item++] = new TestCase( SECTION, "-0 % Number.NEGATIVE_INFINITY", -0, -0 % Number.NEGATIVE_INFINITY );
// If the dividend is a zero and the divisor is finite, the result is the same as the dividend.
array[item++] = new TestCase( SECTION, "0 % 1", 0, 0 % 1 );
array[item++] = new TestCase( SECTION, "0 % -1", -0, 0 % -1 );
array[item++] = new TestCase( SECTION, "-0 % 1", -0, -0 % 1 );
array[item++] = new TestCase( SECTION, "-0 % -1", 0, -0 % -1 );
// In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
// from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
// is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
// possible without exceeding the magnitude of the true mathematical quotient of n and d.
return ( array );
}