-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbroken_brainrender_backend.py
443 lines (345 loc) · 21.5 KB
/
broken_brainrender_backend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
from general_Imports import *
def run_brainrender(cellfinder_output_path, mouse_id, brain_regions_to_evalutate, allen_mouse_10um,estim_shank_radius_um,estim_tip_radius_um,estim_propigation_radius_um,extra_brain_region_acryonm,show_lables,estim_tip_coordinates,save_render,show_gfp_tdTomato_overlapping,show_gfp_only,show_tdTomato_only,overlapping_cells_only
):
cellfinder_output_path = cellfinder_output_path
mouseid = mouse_id
data = {'mouse_id': str(mouse_id),
'cellfinder_output_path': str(cellfinder_output_path),
'estim_tip_coordinates': str(estim_tip_coordinates),
'opticalfiber_tip_coordinates' : str(opticalfiber_tip_coordinates),
'opticalfiber_propigation_radius_um' : str(opticalfiber_propigation_radius_um),
'estim_shank_radius_um' : str(estim_shank_radius_um) ,
'estim_tip_radius_um' : str(estim_tip_radius_um),
'estim_propigation_radius_um' : str(estim_propigation_radius_um),
'opticalfiper_radius_um' : str(opticalfiper_radius_um),
'brain_regions_to_evalutate' : str(brain_regions_to_evalutate),
'extra_brain_region_acryonm' : str(extra_brain_region_acryonm),
'allen_mouse_10um' : str(allen_mouse_10um) }
upddateME_df = pd.DataFrame(data,index=[0])
upddateME_df = upddateME_df.melt()
# df = df.melt(id_vars=["name"], var_name="variable", value_name="value")
# Run the function from cellfinder_backend.py
analyze_data_cellfinder(cellfinder_output_path, mouse_id) # ADD BACK HERE cellfinder_output_path, mouse_id
print(' ')
print("Running brainrender_backend.py")
print('Creating 3D-render and calculating distances for each cell relative to your estim_tip_coordinates')
print("mouse_id: " + str(mouse_id))
print("estim_tip_coordinates :" +str(estim_tip_coordinates))
print(' ')
# Create new brainrender folder in your cellfinder output folder
brainrender_folder_path = cellfinder_output_path + \
str(mouse_id) + "_Completed_Analysis/" +'brainrender_outputs' # create the path for the new folder
if not os.path.exists(brainrender_folder_path):
os.makedirs(brainrender_folder_path)
print('brainrender_output folder has been created at')
print(f'{brainrender_folder_path}')
print('')
else:
print('brainrender_output folder already exisits for ' + str(mouse_id) +' with estim_tip_coordinates of ' + str(estim_tip_coordinates))
# run distance_calculations_histograms() from distance_calculation_and_histograms.py
# calculates 3d-space distances, saves out each cells distance in arrays, and creates histograms of those distances relative to the estim_tip coordinates
distance_calculations_histograms(brainrender_folder_path,mouse_id,estim_tip_coordinates)
#Save out the updateME datafram
updateME_save_path = cellfinder_output_path + str(mouse_id) + "_Completed_Analysis/UpdateME.csv"
upddateME_df.to_csv(updateME_save_path, index=False)
## Sart of brainrender anylysis
scene_export_path = brainrender_folder_path + '/' + str(mouse_id) + '_' + str(estim_tip_coordinates) + '/scence_' + str(mouse_id) + '_' + str(estim_tip_coordinates) + '.html'
# ------------------------------------------ NEEDS EDITIED FOR REAL DATA -----------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------------
# should be gfp and tdTomato channels
# Path to cellfinder_output points.npy file
tdTomato_cells_path = cellfinder_output_path + 'points/points.npy' # --> Update path to how cellfinder outputs different channel data
# Load in all registered cell coordinates, and Define the reference point as one of those coordinates
cells = np.load(tdTomato_cells_path)
# Create Overlapping cells for testing changing the color of the overlapping cells
gfp_cells = cells[49000: 55000] # --> Change to path to gfp points.npy file from cellfinder output
# malke random gfp cells to plot. this should be removed
modified_gfp_cells = np.add(gfp_cells, 250)
# Create an array that contains the shared voxel coordinates between the gfp and tdTomato channels
shared_cells = [i for i in gfp_cells if i in cells]
shared_cells = np.array(shared_cells)
shared_cells_save_path = brainrender_folder_path + '/' + str(mouse_id) + '_' + str(estim_tip_coordinates) + '/shared_cells_' + mouse_id + '_' +str(estim_tip_coordinates) + ".npy"
np.save(shared_cells_save_path , shared_cells)
shared_cell_distance_calculations_histograms(brainrender_folder_path,mouse_id,estim_tip_coordinates)
# create points actors for brainrender to plot in the 3D render
cells_actor = Points(cells)
overlapping_cells_actor = Points(shared_cells,colors="blackboard",radius=22)
modified_gfp_cells_actor = Points(modified_gfp_cells, colors = 'green')
# ------------------------------------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------------
estim_tip_sphere_actor = Sphere(estim_tip_coordinates,estim_tip_radius_um,"green",)
estim_propigation_sphere_actor = Sphere(estim_tip_coordinates,estim_propigation_radius_um,"black",0.25)
opticalfiber_propigation_sphere_actor = Sphere(opticalfiber_tip_coordinates,opticalfiber_propigation_radius_um,"blue",0.25)
estim_tip_coordinates_array = np.array([estim_tip_coordinates])
# cell_volume_in_propigation_sphere_actor = PointsDensity(data=estim_tip_coordinates_array,name='Electical Propigation Sphere',dims=(100, 100, 100),radius=1000,)
# read in braingloab regions df, make lists of names and acryonms
atlas = BrainGlobeAtlas("allen_mouse_50um")
brain_regions_df = atlas.lookup_df.head(1000)
brain_regions_acronym = brain_regions_df['acronym'].to_list()
brain_regions_name = brain_regions_df['name'].to_list()
BrainGlobeAtlas_dictionary = dict(
zip(brain_regions_acronym, brain_regions_name))
# File path to the saved json file
file_path = cellfinder_output_path + mouseid + \
"_Completed_Analysis/" + 'cellfinder_summary/'+ "gfp_brainregions_list.json"
with open(file_path, 'r') as f:
file_content = f.read()
brain_regions_list = json.loads(file_content)
count_file_path = cellfinder_output_path + mouseid + \
"_Completed_Analysis/"+ 'cellfinder_summary/'+ "gfp_brainregions_count.json"
with open(count_file_path, 'r') as f:
file_content = f.read()
brain_regions_count_list = json.loads(file_content)
# create a dictonary and df of brainregion acryonm and name, from the BrainGlobeAtlas. Because this is what brain render uses
brain_regions_dictionary = dict(
zip(brain_regions_list, brain_regions_count_list))
brain_regions_df = pd.DataFrame.from_dict(
brain_regions_dictionary, orient='index')
evaluate = list(brain_regions_dictionary.items())[
:brain_regions_to_evalutate]
# create lists of just the brain regions you want to evaluate, uses brain_regions_to_evalutate variable value
evaluate_brain_regions = brain_regions_list[0:brain_regions_to_evalutate]
index = []
for i in evaluate_brain_regions:
index.append(brain_regions_name.index(i))
evaluate_brain_region_acronyms = []
for i in index:
evaluate_brain_region_acronyms.append(brain_regions_acronym[i])
evaluate_brain_regions_dictionary = dict(
zip(evaluate_brain_regions, evaluate_brain_region_acronyms))
evaluate_brain_regions_df = pd.DataFrame.from_dict(
evaluate_brain_regions_dictionary, orient='index')
evaluate_brain_regions_df.rename(index={0: 'acronym'}, inplace=True)
# create lists of the extra brain regions you want to evaluate, uses brain_regions_to_evalutate variable value
# if len(extra_brain_region_acryonm) >= 1:
index = []
for i in extra_brain_region_acryonm:
index.append(brain_regions_acronym.index(i))
extra_brain_region_names = []
for i in index:
extra_brain_region_names.append(brain_regions_name[i])
else:
print('No extra brain regions added')
extra_brain_regions_dictionary = dict(
zip(extra_brain_region_names, extra_brain_region_acryonm))
evaluate_brain_regions_df = pd.DataFrame.from_dict(
evaluate_brain_regions_dictionary, orient='index')
evaluate_brain_regions_df.rename(index={0: 'acronym'}, inplace=True)
# unknown from cylinder example file on github
settings.SHOW_AXES = False
settings.WHOLE_SCREEN = False
print(f"[{orange}]Running example: {Path(__file__).name}")
# atlas version you want to use
atlas = BrainGlobeAtlas('allen_mouse_50um', check_latest=False)
# Iterate over elements in list1
for element in evaluate_brain_regions:
# Check if element exists in list2
if element in extra_brain_region_names:
# Remove element from list2
extra_brain_region_names.remove(element)
# Iterate over elements in list1
for element in evaluate_brain_region_acronyms:
# Check if element exists in list2
if element in extra_brain_region_acryonm:
# Remove element from list2
extra_brain_region_acryonm.remove(element)
print(str(element) + ' is already in the top ' + str(brain_regions_to_evalutate) + ' brain regions. Removing from extra brain regions')
# load in the dictonary that has all the brain regions and their call counts for this mouse
all_brain_region_cell_count_path = cellfinder_output_path + \
str(mouse_id) + "_Completed_Analysis/" + 'cellfinder_summary/'+ 'all_brainregion_cell_count_list.pkl'
with open(all_brain_region_cell_count_path, 'rb') as f:
loaded_cell_count_dict = pickle.load(f)
# intialise brainrender scene
# --------------- GFP TESTING HERE TO LINE 306 ------------------
if show_gfp_only == True:
scene_gfp = Scene(atlas_name='allen_mouse_50um', title=mouseid + ' GFP cells only')
print(scene_gfp.atlas.space)
# add top brain regions and labels
# colors = ["red", 'orange', "yellow", "green", "blue", "red", 'orange',
# "yellow", "green", "blue", "red", 'orange', "yellow", "green", "blue","red", 'orange', "yellow", "green", "blue", "red", 'orange',
# "yellow", "green", "blue", "red", 'orange', "yellow", "green", "blue"]
for i in range(brain_regions_to_evalutate):
evaluate_brain_region_acronyms[i] = scene_gfp.add_brain_region(
str(evaluate_brain_region_acronyms[i]), alpha=0.2, color='blue')
if show_lables == True:
for i in range(brain_regions_to_evalutate):
# print(evaluate_brain_region_acronyms[i])
scene_gfp.add_label(evaluate_brain_region_acronyms[i], str(
evaluate_brain_regions[i])+' '+ str(brain_regions_count_list[i]))
# scene.add_label(cell_volume_in_propigation_sphere_actor, "Count Volume")
# # Add extra brain regions. specified in the extra_brain_region_acryonm list found in UpdateME.py
list_len = len(extra_brain_region_acryonm)
extra_cell_count_list = []
if len(extra_brain_region_acryonm) == 0:
print("adding no extra brain region to this render. to see addition brain regions, add their acryonms to the extra_brain_regions array in UpdateME.py. A full list of brain regions and their associated acryonms is saved in this repository as acronym_brainregions.csv'")
else:
for i in range(list_len):
extra_brain_region_acryonm[i] = scene_gfp.add_brain_region(
str(extra_brain_region_acryonm[i]), alpha=0.2, color='yellow')
if show_lables == True:
for i in range(list_len):
for key in loaded_cell_count_dict.keys():
value = loaded_cell_count_dict.get(str(extra_brain_region_names[i]))
if value is None:
extra_cell_count_list.append('n/a')
scene_gfp.add_label(extra_brain_region_acryonm[i], str(extra_brain_region_names[i])+ ' ' + '(Manually Added)')
continue
cell_count = loaded_cell_count_dict[str(extra_brain_region_names[i])]
extra_cell_count_list.append(cell_count)
scene_gfp.add_label(extra_brain_region_acryonm[i], str(extra_brain_region_names[i])+ ' ' + str(cell_count) +' '+ '(Manually Added)')
extra_brain_regions_dictionary_with_cellcount = dict(
zip(extra_brain_region_names, extra_cell_count_list))
# create and add a cylinder actor to brain region with the most labled cells
# mesh = shapes.Cylinder(pos=[top, pos], c=color, r=radius, alpha=alpha)
# :param pos: list, np.array of ap, dv, ml coordinates. If an actor is passed, get's the center of mass instead
estim_cylinder_actor = Cylinder(
# have cylinder run from the referece point to the brains surface
estim_tip_coordinates,
scene_gfp.root, # the cylinder actor needs information about the root mesh
"black",
1,
estim_shank_radius_um,
)
# pos = [opticalfiber_surface_coordinates,opticalfiber_tip_coordinates]
# print(pos)
opticalfiper_cylinder_actor = Cylinder(
# have cylinder run from the referece point to the brains surface
opticalfiber_tip_coordinates,
scene_gfp.root, # the cylinder actor needs information about the root mesh
'blue',
1,
opticalfiper_radius_um,
)
# check if 3D render has been saved out
# if not export the 3D render, which can be opened in a web viewer
if save_render == True:
if not os.path.exists(scene_export_path):
print('Saving out brainrender scence, this may take a few minutes...')
scene.export(scene_export_path)
# os.makedirs(scene_export_path)
print('3D render has been created and saved too ')
print(f'{scene_export_path}')
else:
print('A 3D-render of ' + str(mouse_id) + ' already exisits...')
print('To save out a new render')
print('Delete or remove pervious 3D-render from ' + f'{scene_export_path}' )
print(' n')
else:
print('Render Not Saved....')
# print the content of the scence
scene_gfp.content
# --------------- GFP TESTING HERE UP TO LINE 195 ------------------
if show_tdTomato_only == True:
scene = Scene(atlas_name='allen_mouse_50um', title=mouseid + ' tdTomato cells only')
print(scene.atlas.space)
if show_gfp_tdTomato_overlapping == True:
scene = Scene(atlas_name='allen_mouse_50um', title=mouseid + ' GFP, tdTomato, and Overlapping cells')
print(scene.atlas.space)
if overlapping_cells_only == True:
scene = Scene(atlas_name='allen_mouse_50um', title=mouseid + ' Overlapping gfp/tdTomato cells')
print(scene.atlas.space)
# Iterate over elements in list1
for element in evaluate_brain_regions:
# Check if element exists in list2
if element in extra_brain_region_names:
# Remove element from list2
extra_brain_region_names.remove(element)
# Iterate over elements in list1
for element in evaluate_brain_region_acronyms:
# Check if element exists in list2
if element in extra_brain_region_acryonm:
# Remove element from list2
extra_brain_region_acryonm.remove(element)
print(str(element) + ' is already in the top ' + str(brain_regions_to_evalutate) + ' brain regions. Removing from extra brain regions')
# add top brain regions and labels
# colors = ["red", 'orange', "yellow", "green", "blue", "red", 'orange',
# "yellow", "green", "blue", "red", 'orange', "yellow", "green", "blue","red", 'orange', "yellow", "green", "blue", "red", 'orange',
# "yellow", "green", "blue", "red", 'orange', "yellow", "green", "blue"]
for i in range(brain_regions_to_evalutate):
evaluate_brain_region_acronyms[i] = scene.add_brain_region(
str(evaluate_brain_region_acronyms[i]), alpha=0.2, color='blue')
if show_lables == True:
for i in range(brain_regions_to_evalutate):
# print(evaluate_brain_region_acronyms[i])
scene.add_label(evaluate_brain_region_acronyms[i], str(
evaluate_brain_regions[i])+' '+ str(brain_regions_count_list[i]))
# scene.add_label(cell_volume_in_propigation_sphere_actor, "Count Volume")
# load in the dictonary that has all the brain regions and their call counts for this mouse
all_brain_region_cell_count_path = cellfinder_output_path + \
str(mouse_id) + "_Completed_Analysis/" + 'cellfinder_summary/'+ 'all_brainregion_cell_count_list.pkl'
with open(all_brain_region_cell_count_path, 'rb') as f:
loaded_cell_count_dict = pickle.load(f)
# # Add extra brain regions. specified in the extra_brain_region_acryonm list found in UpdateME.py
list_len = len(extra_brain_region_acryonm)
extra_cell_count_list = []
if len(extra_brain_region_acryonm) == 0:
print("adding no extra brain region to this render. to see addition brain regions, add their acryonms to the extra_brain_regions array in UpdateME.py. A full list of brain regions and their associated acryonms is saved in this repository as acronym_brainregions.csv'")
else:
for i in range(list_len):
extra_brain_region_acryonm[i] = scene.add_brain_region(
str(extra_brain_region_acryonm[i]), alpha=0.2, color='yellow')
if show_lables == True:
for i in range(list_len):
for key in loaded_cell_count_dict.keys():
value = loaded_cell_count_dict.get(str(extra_brain_region_names[i]))
if value is None:
extra_cell_count_list.append('n/a')
scene.add_label(extra_brain_region_acryonm[i], str(extra_brain_region_names[i])+ ' ' + '(Manually Added)')
continue
cell_count = loaded_cell_count_dict[str(extra_brain_region_names[i])]
extra_cell_count_list.append(cell_count)
scene.add_label(extra_brain_region_acryonm[i], str(extra_brain_region_names[i])+ ' ' + str(cell_count) +' '+ '(Manually Added)')
extra_brain_regions_dictionary_with_cellcount = dict(
zip(extra_brain_region_names, extra_cell_count_list))
# create and add a cylinder actor to brain region with the most labled cells
# mesh = shapes.Cylinder(pos=[top, pos], c=color, r=radius, alpha=alpha)
# :param pos: list, np.array of ap, dv, ml coordinates. If an actor is passed, get's the center of mass instead
estim_cylinder_actor = Cylinder(
# have cylinder run from the referece point to the brains surface
estim_tip_coordinates,
scene.root, # the cylinder actor needs information about the root mesh
"black",
1,
estim_shank_radius_um,
)
# pos = [opticalfiber_surface_coordinates,opticalfiber_tip_coordinates]
# print(pos)
opticalfiper_cylinder_actor = Cylinder(
# have cylinder run from the referece point to the brains surface
opticalfiber_tip_coordinates,
scene.root, # the cylinder actor needs information about the root mesh
'blue',
1,
opticalfiper_radius_um,
)
# check if 3D render has been saved out
# if not export the 3D render, which can be opened in a web viewer
if save_render == True:
if not os.path.exists(scene_export_path):
print('Saving out brainrender scence, this may take a few minutes...')
scene.export(scene_export_path)
# os.makedirs(scene_export_path)
print('3D render has been created and saved too ')
print(f'{scene_export_path}')
else:
print('A 3D-render of ' + str(mouse_id) + ' already exisits...')
print('To save out a new render')
print('Delete or remove pervious 3D-render from ' + f'{scene_export_path}' )
print(' n')
else:
print('Render Not Saved....')
# print the content of the scence
scene.content
# Add cells Actor to Scence
if show_gfp_tdTomato_overlapping == True:
scene.add(modified_gfp_cells_actor,overlapping_cells_actor,cells_actor, estim_tip_sphere_actor, estim_cylinder_actor,estim_propigation_sphere_actor,opticalfiper_cylinder_actor ,opticalfiber_propigation_sphere_actor)
scene.render()
if show_gfp_only == True:
scene_gfp.add(modified_gfp_cells_actor, estim_tip_sphere_actor, estim_cylinder_actor,estim_propigation_sphere_actor,opticalfiper_cylinder_actor ,opticalfiber_propigation_sphere_actor)
scene_gfp.render()
if show_tdTomato_only == True:
scene.add(cells_actor,estim_tip_sphere_actor, estim_cylinder_actor,estim_propigation_sphere_actor,opticalfiper_cylinder_actor ,opticalfiber_propigation_sphere_actor)
scene.render()
if overlapping_cells_only == True:
scene.add(overlapping_cells_actor,estim_tip_sphere_actor, estim_cylinder_actor,estim_propigation_sphere_actor,opticalfiper_cylinder_actor ,opticalfiber_propigation_sphere_actor)
scene.render()