-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrainer.py
259 lines (209 loc) · 11.2 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import joblib
import argparse
import tensorflow as tf
from tensorflow.keras import optimizers
from sklearn.model_selection import train_test_split
from tensorflow.keras.utils import plot_model
import utils
import models
import data_builder
import train_datagen
from callbacks import lr_schedulers, early_stopping
print("tensorflow ", tf.__version__, "\n")
ap = argparse.ArgumentParser()
ap.add_argument('-d', '--dataset', required=True,
help='Dataset to train on, `fer`, `feraligned`, `ck` and `feraligned+ck` are supported')
ap.add_argument('-m', '--model', required=True,
help='Model to train on, currently `CNNModel`, `CNN_ROI1_ROI2Model` and `CNN_ROI1_ROI2_HOGFeat_Model` are supported')
ap.add_argument('-em', '--emotions', required=True,
help='Emotions to train on, comma separated values, depending on the dataset select any subset from {Happy,Sadness,Surprise,Angry,Fear,Neutral}')
ap.add_argument('-s', '--shuffle', required=False,
help="1 to Shuffle before split otherwise 0, default is 1")
ap.add_argument('-rs', '--random_state', required=False,
help="Random state to use, default is 42")
ap.add_argument('-tr', '--train_ratio', required=False,
help="Train ratio a value from 0 to 1, default is 0.85")
ap.add_argument('-lrs', '--lr_scheduler', required=False,
help="lr scheduler to use, default is None")
ap.add_argument('-es', '--early_stopping', required=False,
help="early stopping to use, default is None")
ap.add_argument('-tg', '--train_datagen', required=False,
help="train data generator to use, default is None")
ap.add_argument('-bs', '--batch_size', required=False,
help="Batch size to use, default is 24")
ap.add_argument('-ep', '--epochs', required=False,
help="Max epochs, default is 50")
ap.add_argument('-o', '--optim', required=False,
help="Optimizer to use, `adam` and `nadam` are supported, default is adam")
ap.add_argument('-lr', '--learning_rate', required=False,
help="learning rate to use, default is 0.01")
ap.add_argument('-sa', '--save_architecture', required=False,
help="1 to save_architecture otherwise 0, default is 0")
ap.add_argument('-sm', '--save_model', required=False,
help="1 to save the model otherwise 0, default is 0")
ap.add_argument('-scm', '--save_confusion_matrix', required=False,
help="1 to save the confusion matrix of test set otherwise 0, default is 0")
ap.add_argument('-sth', '--save_training_history', required=False,
help="1 to save training history otherwise 0, default is 0")
args = vars(ap.parse_args())
DEFAULT_BOOLEAN_PARAMS = {
'shuffle': True,
'save_model': False,
'save_architecture': False,
'save_confusion_matrix': False,
'save_training_history': False,
}
for k in args:
if k in DEFAULT_BOOLEAN_PARAMS:
args[k] = (
DEFAULT_BOOLEAN_PARAMS[k]
if args[k] is None else
utils.arg2bool(args[k])
)
DEFAULT_NONBOOLEAN_PARAMS = {
'random_state': (42, int),
'train_ratio': (0.85, float),
'lr_scheduler': (None, str),
'early_stopping': (None, str),
'train_generator': (None, str),
'batch_size': (24, int),
'epochs': (50, int),
'optim': ("adam", str),
'learning_rate': (0.01, float),
}
for k in args:
if k in DEFAULT_NONBOOLEAN_PARAMS:
args[k] = (
DEFAULT_NONBOOLEAN_PARAMS[k][0]
if args[k] is None else
DEFAULT_NONBOOLEAN_PARAMS[k][1](args[k])
)
DATA_PATH = "inputs/" + args["dataset"] + "/"
OUTPUT_PATH = "outputs/"
EMOTIONS = list(args["emotions"].split(","))
callbacks = []
if not args["lr_scheduler"] is None:
callbacks.append(lr_schedulers.lr_schedulers[args["lr_scheduler"]])
if not args["early_stopping"] is None:
callbacks.append(early_stopping.early_stopping[args["early_stopping"]])
if not args["train_datagen"] is None:
train_datagen = train_datagen.train_datagen[args["train_datagen"]]
else:
train_datagen = None
if args["optim"] == "nadam":
optim = optimizers.Nadam(args["learning_rate"])
else:
optim = optimizers.Adam(args["learning_rate"])
if args["model"] == "CNNModel":
model = models.CNNModel()
img_arr, img_label, label_to_text = data_builder.ImageToArray(DATA_PATH, EMOTIONS).build_from_directory()
img_arr = img_arr / 255.
X_train, X_test, y_train, y_test = train_test_split(img_arr, img_label, shuffle=args["shuffle"], stratify=img_label,
train_size=args["train_ratio"], random_state=args["random_state"])
print(f"X_train: {X_train.shape}, X_test: {X_test.shape}, y_train: {y_train.shape}, y_test: {y_test.shape} \n")
model.train(
X_train, y_train,
validation_data = (X_test, y_test),
batch_size = args["batch_size"],
epochs = args["epochs"],
optim = optim,
callbacks = callbacks,
train_datagen = train_datagen,
)
RUN_NAME = f"{model.__class__.__name__}_{args['dataset']}_{len(EMOTIONS)}emo"
if args["save_confusion_matrix"]:
model.evaluate(X_test, y_test, OUTPUT_PATH + "confusion_matrix/" + RUN_NAME + ".png")
elif args["model"] == "CNN_ROI1_ROI2Model":
model = models.CNN_ROI1_ROI2Model()
roi1_arr, roi2_arr, img_to_exclude = data_builder.ImageToROI(DATA_PATH, EMOTIONS).build_from_directory()
img2arr_obj = data_builder.ImageToArray(DATA_PATH, EMOTIONS, img_to_exclude)
img_arr, img_label, label_to_text = img2arr_obj.build_from_directory()
img2arr_obj.class_image_count()
img_arr = img_arr / 255.
roi1_arr = roi1_arr / 255.
roi2_arr = roi2_arr / 255.
Xtrain_img, Xtest_img, Xtrain_roi1, Xtest_roi1, Xtrain_roi2, Xtest_roi2, y_train, y_test =\
train_test_split(img_arr, roi1_arr, roi2_arr, img_label,
shuffle=args["shuffle"], stratify=img_label, train_size=args["train_ratio"], random_state=args["random_state"])
print(f"Xtrain_img: {Xtrain_img.shape}, Xtrain_roi1: {Xtrain_roi1.shape}, Xtrain_roi2: {Xtrain_roi2.shape}, y_train: {y_train.shape}")
print(f"Xtest_img: {Xtest_img.shape}, Xtest_roi1: {Xtest_roi1.shape}, Xtest_roi2: {Xtest_roi2.shape}, y_test: {y_test.shape} \n")
model.train(
Xtrain_img, Xtrain_roi1, Xtrain_roi2,
y_train,
validation_data = ([Xtest_img, Xtest_roi1, Xtest_roi2], y_test),
batch_size = args["batch_size"],
epochs = args["epochs"],
optim = optim,
callbacks = callbacks,
train_datagen = train_datagen,
)
RUN_NAME = f"{model.__class__.__name__}_{args['dataset']}_{len(EMOTIONS)}emo"
if args["save_confusion_matrix"]:
model.evaluate([Xtest_img, Xtest_roi1, Xtest_roi2], y_test, OUTPUT_PATH + "confusion_matrix/" + RUN_NAME + ".png")
elif args["model"] == "CNN_ROI1_ROI2_HOGFeat_Model":
model = models.CNN_ROI1_ROI2_HOGFeat_Model()
roi1_arr, roi2_arr, img_to_exclude = data_builder.ImageToROI(DATA_PATH, EMOTIONS).build_from_directory()
hogfeat = data_builder.ImageToHOGFeatures(DATA_PATH, EMOTIONS, img_to_exclude).build_from_directory()
img2arr_obj = data_builder.ImageToArray(DATA_PATH, EMOTIONS, img_to_exclude)
img_arr, img_label, label_to_text = img2arr_obj.build_from_directory()
img2arr_obj.class_image_count()
img_arr = img_arr / 255.
roi1_arr = roi1_arr / 255.
roi2_arr = roi2_arr / 255.
Xtrain_img, Xtest_img, Xtrain_roi1, Xtest_roi1, Xtrain_roi2, Xtest_roi2, Xtrain_hogfeat, Xtest_hogfeat, y_train, y_test =\
train_test_split(img_arr, roi1_arr, roi2_arr, hogfeat, img_label,
shuffle=args["shuffle"], stratify=img_label, train_size=args["train_ratio"], random_state=args["random_state"])
print(f"Xtrain_img: {Xtrain_img.shape}, Xtrain_roi1: {Xtrain_roi1.shape}, Xtrain_roi2: {Xtrain_roi2.shape}, Xtrain_hogfeat: {Xtrain_hogfeat.shape}, y_train: {y_train.shape}")
print(f"Xtest_img: {Xtest_img.shape}, Xtest_roi1: {Xtest_roi1.shape}, Xtest_roi2: {Xtest_roi2.shape}, Xtest_hogfeat: {Xtest_hogfeat.shape}, y_test: {y_test.shape} \n")
model.train(
Xtrain_img, Xtrain_roi1, Xtrain_roi2, Xtrain_hogfeat,
y_train,
validation_data = ([Xtest_img, Xtest_roi1, Xtest_roi2, Xtest_hogfeat], y_test),
batch_size = args["batch_size"],
epochs = args["epochs"],
optim = optim,
callbacks = callbacks,
train_datagen = train_datagen,
)
RUN_NAME = f"{model.__class__.__name__}_{args['dataset']}_{len(EMOTIONS)}emo"
if args["save_confusion_matrix"]:
model.evaluate([Xtest_img, Xtest_roi1, Xtest_roi2, Xtest_hogfeat], y_test, OUTPUT_PATH + "confusion_matrix/" + RUN_NAME + ".png")
elif args["model"] == "CNN_ROI1_ROI2_KLDIST_Model":
model = models.CNN_ROI1_ROI2_KLDIST_Model()
roi1_arr, roi2_arr, img_to_exclude = data_builder.ImageToROI(DATA_PATH, EMOTIONS).build_from_directory()
kl_dists = data_builder.ImageToKeyLandmarksDistances(DATA_PATH, EMOTIONS, img_to_exclude).build_from_directory()
img2arr_obj = data_builder.ImageToArray(DATA_PATH, EMOTIONS, img_to_exclude)
img_arr, img_label, label_to_text = img2arr_obj.build_from_directory()
img2arr_obj.class_image_count()
img_arr = img_arr / 255.
roi1_arr = roi1_arr / 255.
roi2_arr = roi2_arr / 255.
Xtrain_img, Xtest_img, Xtrain_roi1, Xtest_roi1, Xtrain_roi2, Xtest_roi2, Xtrain_kldist, Xtest_kldist, y_train, y_test =\
train_test_split(img_arr, roi1_arr, roi2_arr, kl_dists, img_label,
shuffle=args["shuffle"], stratify=img_label, train_size=args["train_ratio"], random_state=args["random_state"])
print(f"Xtrain_img: {Xtrain_img.shape}, Xtrain_roi1: {Xtrain_roi1.shape}, Xtrain_roi2: {Xtrain_roi2.shape}, Xtrain_kldist: {Xtrain_kldist.shape}, y_train: {y_train.shape}")
print(f"Xtest_img: {Xtest_img.shape}, Xtest_roi1: {Xtest_roi1.shape}, Xtest_roi2: {Xtest_roi2.shape}, Xtest_kldist: {Xtest_kldist.shape}, y_test: {y_test.shape} \n")
model.train(
Xtrain_img, Xtrain_roi1, Xtrain_roi2, Xtrain_kldist,
y_train,
validation_data = ([Xtest_img, Xtest_roi1, Xtest_roi2, Xtest_kldist], y_test),
batch_size = args["batch_size"],
epochs = args["epochs"],
optim = optim,
callbacks = callbacks,
train_datagen = train_datagen,
)
RUN_NAME = f"{model.__class__.__name__}_{args['dataset']}_{len(EMOTIONS)}emo"
if args["save_confusion_matrix"]:
model.evaluate([Xtest_img, Xtest_roi1, Xtest_roi2, Xtest_kldist], y_test, OUTPUT_PATH + "confusion_matrix/" + RUN_NAME + ".png")
else:
raise ValueError(f"Invalid model {args['model']}, only `CNNModel`, `CNN_ROI1_ROI2Model` and `CNN_ROI1_ROI2_HOGFeat_Model` are supported")
if args["save_model"]:
model.save_model(OUTPUT_PATH + "models/" + RUN_NAME + ".h5")
print(label_to_text)
joblib.dump(label_to_text, OUTPUT_PATH + "label2text/label2text_" + RUN_NAME + ".pkl")
if args["save_training_history"]:
model.save_training_history(OUTPUT_PATH + "epoch_metrics/" + RUN_NAME + ".png")
if args["save_architecture"]:
plot_model(model.model, show_shapes=True, show_layer_names=True, expand_nested=True,
dpi=50, to_file=OUTPUT_PATH + "architectures/" + model.__class__.__name__ + ".png")