-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathCodeLlama-web-demo.py
executable file
·112 lines (89 loc) · 4.67 KB
/
CodeLlama-web-demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
import gradio as gr
import mdtex2html
import torch
# model_name = "codellama/CodeLlama-7b-Instruct-hf"
model_name = "/mnt/d/llm-models/CodeLlama-7b-hf"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True,)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True,load_in_8bit=True, device_map="auto")
device = "cuda" # for GPU usage or "cpu" for CPU usage
"""Override Chatbot.postprocess"""
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
gr.Chatbot.postprocess = postprocess
def parse_text(text):
lines = text.replace("<s>", "").split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f'<br></code></pre>'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>"+line
text = "".join(lines)
return text
def predict(input, chatbot, max_length, top_p, temperature, history, past_key_values):
print("-------------input:\n" + input)
chatbot.append((parse_text(input), ""))
inputs = tokenizer.encode(input, return_tensors="pt").to(device)
attention_mask = torch.ones(inputs.shape, dtype=torch.long, device=device)
outputs = model.generate(inputs, max_length=max_length, do_sample=True, top_p=top_p, temperature=temperature, num_return_sequences=1, pad_token_id=model.config.eos_token_id, attention_mask=attention_mask)
result = tokenizer.decode(outputs[0], clean_up_tokenization_spaces=True)
print("-------------generate:\n" + result)
# for response, history, past_key_values in model.stream_chat(tokenizer, input, history, past_key_values=past_key_values,
# return_past_key_values=True,
# max_length=max_length, top_p=top_p,
# temperature=temperature):
chatbot[-1] = (parse_text(input),parse_text( '```\n' + result))
yield chatbot, history, past_key_values
def reset_user_input():
return gr.update(value='')
def reset_state():
return [], [], None
with gr.Blocks() as demo:
gr.HTML("""<h1 align="center">codellama/CodeLlama-7b-Instruct-hf</h1>""")
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=12):
user_input = gr.Textbox(show_label=False, placeholder="Input...", value='tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True,)', lines=10).style(container=False)
with gr.Column(min_width=32, scale=1):
submitBtn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_length = gr.Slider(0, 32768, value=200, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=0.8, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0, 1, value=0.1, step=0.01, label="Temperature", interactive=True)
history = gr.State([])
past_key_values = gr.State(None)
submitBtn.click(predict, [user_input, chatbot, max_length, top_p, temperature, history, past_key_values],
[chatbot, history, past_key_values], show_progress=True)
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(reset_state, outputs=[chatbot, history, past_key_values], show_progress=True)
demo.queue().launch(share=False, inbrowser=True, debug=True)