-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathembedder.py
43 lines (30 loc) · 1.3 KB
/
embedder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.vectorstores import Chroma
from langchain.document_loaders import DirectoryLoader, TextLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import sys
data_directory = "./content"
embedding_directory = "./content/chroma_db"
embedding_db = None;
def embed():
print("\nCalculating Embeddings\n")
# Load the text from the data directory
loader=DirectoryLoader(data_directory,
glob="*.txt",
loader_cls=TextLoader)
documents=loader.load()
# Split the data into chunks
text_splitter=RecursiveCharacterTextSplitter(chunk_size=500,
chunk_overlap=50)
chunks = text_splitter.split_documents(documents)
# Load the huggingface embedding model
model_name = "BAAI/bge-base-en"
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
embedding_model = HuggingFaceBgeEmbeddings(
model_name=model_name,
model_kwargs={'device': 'cpu'},
#model_kwargs={'device': 'cuda'},
encode_kwargs=encode_kwargs
)
embedding_db = Chroma.from_documents(chunks, embedding_model, persist_directory=embedding_directory)
print("Embeddings completed")