diff --git a/docs/griptape-framework/drivers/vector-store-drivers.md b/docs/griptape-framework/drivers/vector-store-drivers.md index ea2b72a56..e673c15e1 100644 --- a/docs/griptape-framework/drivers/vector-store-drivers.md +++ b/docs/griptape-framework/drivers/vector-store-drivers.md @@ -49,7 +49,6 @@ results = vector_store_driver.query( values = [r.to_artifact().value for r in results] print("\n\n".join(values)) - ``` ### Griptape Cloud Knowledge Base @@ -73,7 +72,6 @@ results =vector_store_driver.query(query="What is griptape?") values = [r.to_artifact().value for r in results] print("\n\n".join(values)) - ``` ### Pinecone @@ -86,49 +84,27 @@ The [PineconeVectorStoreDriver](../../reference/griptape/drivers/vector/pinecone Here is an example of how the Driver can be used to load and query information in a Pinecone cluster: ```python -import os -import hashlib -import json -from urllib.request import urlopen +import os +from griptape.artifacts import BaseArtifact from griptape.drivers import PineconeVectorStoreDriver, OpenAiEmbeddingDriver +from griptape.loaders import WebLoader -def load_data(driver: PineconeVectorStoreDriver) -> None: - response = urlopen( - "https://raw.githubusercontent.com/wedeploy-examples/" - "supermarket-web-example/master/products.json" - ) - - for product in json.loads(response.read()): - driver.upsert_text( - product["description"], - vector_id=hashlib.md5(product["title"].encode()).hexdigest(), - meta={ - "title": product["title"], - "description": product["description"], - "type": product["type"], - "price": product["price"], - "rating": product["rating"], - }, - namespace="supermarket-products", - ) # Initialize an Embedding Driver embedding_driver = OpenAiEmbeddingDriver(api_key=os.environ["OPENAI_API_KEY"]) -vector_store_driver = PineconeVectorStoreDriver( - api_key=os.environ["PINECONE_API_KEY"], - environment=os.environ["PINECONE_ENVIRONMENT"], - index_name=os.environ['PINECONE_INDEX_NAME'], - embedding_driver=embedding_driver, -) +vector_store_driver = PineconeVectorStoreDriver(embedding_driver=embedding_driver) -load_data(vector_store_driver) +# Load Artifacts from the web +artifacts = WebLoader(max_tokens=100).load("https://www.griptape.ai") + +# Upsert Artifacts into the Vector Store Driver +[vector_store_driver.upsert_text_artifact(a, namespace="griptape") for a in artifacts] results = vector_store_driver.query( - "fruit", + "creativity", count=3, - filter={"price": {"$lte": 15}, "rating": {"$gte": 4}}, - namespace="supermarket-products", + namespace="griptape" ) values = [r.to_artifact().value for r in results]