-
Notifications
You must be signed in to change notification settings - Fork 0
/
GamessUSReader.py
302 lines (283 loc) · 9.6 KB
/
GamessUSReader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
"""
Utilities for reading data from GamessUS .log files.
* GamessSurf object loads data from ``RUNTYPE=SURFACE`` files.
Jonathan Gutow <[email protected]>
January 2021
"""
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import k3d as k3d
class GamessSurf():
"""
Loads a surface from a GamessUS ``RUNTYPE=SURFACE`` log file into a GamessSurf object.
``.plot()`` will automatically generate a 2-D or 3-D plot as appropriate for the surface.
The 3-D plots use k3d so only work in Jupyter notebooks, but they are live.
"""
def __init__(self,filepath):
"""
Parameters
==========
filepath: str containing the full path to the GamessUS .out (.log) file created by
a Surface calculation.
Returns
=======
Object: object of type GamessSurf.
"""
self.filepath = filepath
if self.issurfcalc():
self.points = self.loadGAMESSsurf()
self.coor1, self.coor2 = self._getcoordef()
else:
raise TypeError('File is not the output of a GamessUS surface calculation.')
def loadGAMESSsurf(self):
file = open(self.filepath,'r')
notEOF = True
points = []
count = 0
print('Reading file ',end='')
while (notEOF):
line = file.readline()
if line == '':
notEOF = False
if line.find('SURFACE MAPPING GEOMETRY')>-1:
line = file.readline()
line = line.strip()
ineq1 = line.find('=')
ineq2 = line.rfind('=')
coor1 = float(line[ineq1+1:ineq1+7])
coor2 = float(line[ineq2+1:ineq2+7])
line = file.readline().strip()
parts = line.rsplit()
energy = float(parts[len(parts)-1])
points.append([coor1,coor2,energy])
count+=1
if count%100 == 0:
print('.',end='')
file.close()
return points
def issurfcalc(self):
"""
Returns
=======
Boolean: True if the calculation type should return a surface.
"""
file = open(self.filepath,'r')
linecount = 0
while linecount < 700:
line = file.readline()
if line == '':
#end of file
linecount = 701
if line.find('RUNTYP=SURFACE')>-1:
file.close()
return True
linecount += 1
file.close()
return False
def _getcoordef(self):
"""
Returns
=======
one,two: list of strings to label coordinates
"""
file = open(self.filepath,'r')
one =''
two =''
atomsv1 = []
atomsv2 = []
atomnums = []
atomnames = []
line = file.readline()
CONT = True
while (line !='') and CONT:
if line.find('$SURF')>-1:
pieces = line.split()
for k in pieces:
if k.find('IVEC1')>-1:
ats = (k.split("="))[1].split(",")
atomsv1.append(int(ats[0]))
atomsv1.append(int(ats[1]))
if k.find('IVEC2') >-1:
ats = (k.split("="))[1].split(",")
atomsv2.append(int(ats[0]))
atomsv2.append(int(ats[1]))
if line.find('$DATA')>-1:
atomnums.append(atomsv1[0])
atomnames.append('')
atomnums.append(atomsv1[1])
atomnames.append('')
if len(atomsv2)>0:
if atomsv2[0] not in atomnums:
atomnums.append(atomsv2[0])
atomnames.append('')
if atomsv2[1] not in atomnums:
atomnums.append(atomsv2[1])
atomnames.append('')
line = file.readline()
atomno = 0
while line.find('$END')<0:
pieces = line.split()
nfloat = 0
if len(pieces) == 6:
for i in range(2, 6):
try:
float(pieces[i])
nfloat+=1
except:
pass
if nfloat == 4:
atomno += 1
atomstr = (pieces[1].split(">"))[1]
for i in range(len(atomnums)):
if atomno == atomnums[i]:
atomnames[i]=atomstr
line = file.readline()
print('.',end='')
CONT = False
line=file.readline()
file.close()
atomnodict = dict(zip(atomnums,atomnames))
one = '\\Delta R_{'
one += atomnodict[atomsv1[0]]+'_{('+str(atomsv1[0])+')}'
one += atomnodict[atomsv1[1]]+'_{('+str(atomsv1[1])+')}}'
if len(atomsv2)==2:
two = '\\Delta R_{'
two += atomnodict[atomsv2[0]]+'_{('+str(atomsv2[0])+')}'
two += atomnodict[atomsv2[1]]+'_{('+str(atomsv2[1])+')}}'
return one, two
def asmeshgrid(self):
"""
Takes an ordered lattice of 3-d points and extracts the 2-D mesh grid
from the first two coordinates of the points and a list of heights from
the last coordinate.
Return
======
x,y,z: lists of lists of float a mesh grid for x, y and z.
"""
valmax = [0,0]
valmin = [0,0]
xvals = [k[0] for k in self.points]
yvals = [k[1] for k in self.points]
valmax[0] = np.max(xvals)
valmin[0] = np.min(xvals)
valmax[1] = np.max(yvals)
valmin[1] = np.min(yvals)
#print(valmin,valmax)
x = []
y = []
z = []
# check which is indexed first
# assume a rectangular grid
indexed_first = None
if self.points[0][0]!=self.points[1][0]:
indexed_first = 0
indexed_second = 1
else:
indexed_first = 1
indexed_second = 0
tmpdim = 1
up = self.points[0][indexed_first]<self.points[1][indexed_first]
val = self.points[0][indexed_first]
if up:
while val != valmax[indexed_first]:
tmpdim+=1
val=self.points[tmpdim-1][indexed_first]
else:
while val != valmin[indexed_first]:
tmpdim+=1
val=self.points[tmpdim-1][indexed_first]
dim = [0,0]
dim[indexed_first] = tmpdim
dim[indexed_second] = int(len(self.points)/tmpdim)
tempx = []
tempy = []
tempz = []
for i in range(len(self.points)):
tempx.append(self.points[i][0])
tempy.append(self.points[i][1])
tempz.append(self.points[i][2])
if (i+1)%dim[1] == 0:
x.append(tempx)
y.append(tempy)
z.append(tempz)
tempx =[]
tempy =[]
tempz =[]
if indexed_first == 1:
# Transpose to get ordering
x = np.array(np.transpose(x),np.float32)
y = np.array(np.transpose(y),np.float32)
z = np.array(np.transpose(z),np.float32)
return x, y, z
def aspandas(self):
x = []
y = []
z = []
for k in self.points:
x.append(k[0])
y.append(k[1])
z.append(k[2])
return pd.DataFrame({self.coor1:x, self.coor2:y, 'Energy (au)':z})
def mins(self):
"""
Returns a list of points where z is at a minimum
"""
mins = []
ref = self.points[0][2]
for k in self.points:
if k[2]<ref:
ref = k[2]
for k in self.points:
if k[2] == ref:
mins.append(k)
return mins
def plot(self):
"""
Produces either a surface plot (2-D PES) or a curve plot (1-D PES)
"""
if (self.coor1 == '') or (self.coor2 == ''):
return self._plot2D()
else:
return self._plot3D()
pass
def _plot2D(self):
xindex = None
if self.coor1 == '':
xindex = 1
else:
xindex = 0
plotdf = self.aspandas()
xstr = '$'+plotdf.columns[xindex]+'\,(\AA)$'
return plotdf.plot(x=plotdf.columns[xindex],y=plotdf.columns[2],
xlabel=xstr, ylabel='Energy (au)')
def ask3dsurf(self):
"""
Return
======
surface: a k3d surface object.
"""
mx,my,mz = self.asmeshgrid()
surface = k3d.surface(mz,xmin=np.min(mx), xmax=np.max(mx), ymin=np.min(my), ymax=np.max(my))
surface.color_map=k3d.colormaps.basic_color_maps.Rainbow
surface.attribute=mz
surface.color_range = [np.min(mz), np.max(mz)]
return surface
def ask3dplot(self):
"""
Return
======
plot: a k3d plot object containing the surface
"""
plot = k3d.plot(axes=[self.coor1+' (Angs)',self.coor2+' (Angs)','Energy (au)'])
surface = self.ask3dsurf()
plot+=surface
return plot
def _plot3D(self):
"""
Return
======
live plot: a k3d live plot
"""
plot = self.ask3dplot()
return plot.display()