-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtemporal_text_dataset.py
99 lines (83 loc) · 3.33 KB
/
temporal_text_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import re
from dataclasses import dataclass
from pathlib import Path
import pyarrow as pa
import datasets
FEATURES = datasets.Features(
{
"text": datasets.Value("string"),
"time": datasets.Value("string"),
}
)
ARROW_SCHEMA = pa.schema({"text": pa.string(), "time": pa.string()})
@dataclass
class TextConfig(datasets.BuilderConfig):
"""BuilderConfig for text files."""
encoding: str = "utf-8"
chunksize: int = 10 << 20 # 10MB
keep_linebreaks: bool = False
class TemporalText(datasets.ArrowBasedBuilder):
"""Dataset for text with time points.
Based on the Text dataset (https://github.com/huggingface/datasets/blob/master/src/datasets/packaged_modules/text/text.py).
"""
BUILDER_CONFIG_CLASS = TextConfig
def _info(self):
return datasets.DatasetInfo(features=FEATURES)
@staticmethod
def find_time(filename):
filename = Path(filename).name
# Look for the longest string starting with a digit, until a dot or an alphabet character.
# This matches both "nyt_2017.txt" and "nyt_2_2017.txt"
m = re.match(r".*?_(\d+.*?)[\.a-zA-Z]", filename)
if m is None:
return None
time = m.group(1)
# Remove trailing underscores (e.g., for "nyt_2017_train.txt")
time = time.strip("_")
return time
def _generate_tables(self, files):
for file_idx, file in enumerate(files):
batch_idx = 0
with open(file, 'r', encoding=self.config.encoding) as f:
time = self.find_time(f.name)
while True:
batch = f.read(self.config.chunksize)
if not batch:
break
batch += f.readline() # finish current line
batch = batch.splitlines()
pa_table = pa.Table.from_arrays(
[pa.array(batch), pa.array(len(batch) * [time])],
schema=ARROW_SCHEMA,
)
yield (file_idx, batch_idx), pa_table
batch_idx += 1
def _split_generators(self, dl_manager):
"""The `data_files` kwarg in load_dataset() can be a str, List[str], Dict[str,str], or Dict[str,List[str]].
If str or List[str], then the dataset returns only the 'train' split.
If dict, then keys should be from the `datasets.Split` enum.
"""
if not self.config.data_files:
raise ValueError(
f"At least one data file must be specified, but got data_files={self.config.data_files}"
)
data_files = dl_manager.download_and_extract(self.config.data_files)
if isinstance(data_files, (str, list, tuple)):
files = data_files
if isinstance(files, str):
files = [files]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"files": files}
)
]
splits = []
for split_name, files in data_files.items():
if isinstance(files, str):
files = [files]
splits.append(
datasets.SplitGenerator(name=split_name, gen_kwargs={"files": files})
)
return splits
def _generate_examples(self, **kwargs):
raise NotImplementedError()