forked from SAP-samples/btp-industry-use-cases
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathct_cd_pipeline.py
643 lines (496 loc) · 25.5 KB
/
ct_cd_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
import json
from git import Repo
from datetime import datetime
import logging
import joblib
import os
import random
import sys
import time
import yaml
import glob
from IPython.display import clear_output
from os.path import exists
from joblib import load, dump
from os import makedirs, environ
import base64
import requests
from requests.auth import HTTPBasicAuth
from pandas_schema import Column, Schema
from pandas_schema.validation import InRangeValidation, InListValidation,\
IsDistinctValidation, DateFormatValidation, CustomElementValidation
from sklearn import datasets, ensemble
from sklearn.metrics import mean_squared_error, mean_absolute_percentage_error
from sklearn.model_selection import train_test_split
from ai_api_client_sdk.ai_api_v2_client import AIAPIV2Client, Authenticator
from ai_api_client_sdk.models.artifact import Artifact
from ai_api_client_sdk.models.status import Status
from ai_api_client_sdk.models.target_status import TargetStatus
from ai_api_client_sdk.models.parameter_binding import ParameterBinding
from ai_api_client_sdk.models.input_artifact_binding import InputArtifactBinding
FORMAT = "%(asctime)s:%(name)s:%(levelname)s - %(message)s"
# Use filename="file.log" as a param to logging to log to a file
logging.basicConfig(format=FORMAT, level=logging.INFO)
class ct_cd_pipeline:
def __init__(self) -> None:
args = len(sys.argv) - 1
pos = 1
while (args >= pos):
print ("Parameter at position %i is %s" % (pos, sys.argv[pos]))
pos = pos + 1
self.resource_group_dev = "dev"
self.resource_group_test = "test"
self.resource_group_prod = "prod"
self.resource_group_mlops = "mlops"
self.git_repo_name = None
self.git_repo_url = None
self.git_repo_username = None
self.git_repo_password = None
self.ai_core_v2_client = None
self.token = None
self.headers = None
self.aic_service_key = environ["CREDENTIALS_PATH"] + "/aic_service_key.json"
self.dataset_name = "pipeline-corr-data"
self.model_name = "pipelinecorrmodel" #Taken from the GitHub template
self.scenario_id = "pipeline-corrosion-analytics" #Taken from the GitHub template
self.executable_name = "training-pipeline" #Taken from the GitHub template
self.data_source_train = environ["DATA_SOURCE_TRAIN"]
self.data_source_test = environ["DATA_SOURCE_TEST"]
self.credentials_path = environ["CREDENTIALS_PATH"] + "/git_setup.json"
self.dataset_path_train = sys.argv[4] #This must become a parameter
self.current_deployment_id = sys.argv[1]
self.serving_executable_name = "server-pipeline" #Taken from the GitHub template
self.metric_threshold = float(sys.argv[2])
self.artifact_resp = None
self.artifact_id = sys.argv[3]
self.execution_id = None
self.train_config_resp = None
self.serve_config_resp = None
self.execution_resp = None
self.training_output = None
self.metric_resp = None
self.deployment_resp = None
self.dataset_all = None
def get_github_credentials(self) -> None:
print("Getting GitHub credentials.")
# Loads your git_setup.json
with open(self.credentials_path) as gs:
setup_json = json.load(gs)
repo_json = setup_json["repo"]
self.git_repo_name = repo_json["name"]
self.git_repo_url = repo_json["url"]
self.git_repo_username = repo_json["username"]
self.git_repo_password = repo_json["password"]
#print(self.git_repo_name, self.git_repo_url, self.git_repo_username, self.git_repo_password)
def get_temp_conf(self) -> None:
print("1. Retrieving configuration from the GitHub repository.")
username = self.git_repo_username
token = self.git_repo_password
repo_name = self.git_repo_name
folder = "solution-prod-templates" #This must become a parameter
train_temp_path = folder+"/training_template.yaml?ref=main" #This must become a parameter
serve_temp_path = folder+"/serving_template.yaml?ref=main" #This must become a parameter
train_temp_url = "https://api.github.com/repos/"+username+"/"+repo_name+"/contents/"+train_temp_path
serve_temp_url = "https://api.github.com/repos/"+username+"/"+repo_name+"/contents/"+serve_temp_path
#print(train_temp_url, serve_temp_url)
req_train_temp = requests.get(train_temp_url, auth = HTTPBasicAuth(username, token))
req_serve_temp = requests.get(serve_temp_url, auth = HTTPBasicAuth(username, token))
if req_train_temp.status_code == requests.codes.ok:
#print(req_train_temp.status_code)
req_train_temp = req_train_temp.json()
content = base64.b64decode(req_train_temp['content'])
#print(content)
training_workflow = yaml.safe_load(content)
#print(training_workflow)
else:
print('Content was not found.') #This has to stop the execution
exit(1)
if req_serve_temp.status_code == requests.codes.ok:
#print(req_serve_temp.status_code)
req_serve_temp = req_serve_temp.json()
content = base64.b64decode(req_serve_temp['content'])
#print(content)
serving_workflow = yaml.safe_load(content)
#print(serving_workflow)
else:
print('Content was not found.') #This has to stop the execution
exit(1)
# From the training template
self.scenario_id = training_workflow['metadata']['labels']['scenarios.ai.sap.com/id']
self.dataset_name = training_workflow['spec']['templates'][0]['inputs']['artifacts'][0]['name']
self.executable_name = training_workflow['metadata']['name']
print(self.scenario_id, self.dataset_name, self.executable_name)
self.model_name = serving_workflow['spec']['inputs']['artifacts'][0]['name']
self.serving_executable_name = serving_workflow['metadata']['name']
print(self.scenario_id, self.model_name, self.serving_executable_name)
print("1. Configuration retrieved from the GitHub repository.")
def create_api_client(self, resource_group) -> None:
print("2. Creating AI API client instance.")
# Your service key JSON file relative to your aicore instance
aic_service_key_path = self.aic_service_key
# Loads the service key file
with open(aic_service_key_path) as ask:
aic_service_key = json.load(ask)
# Creating an AI API client instance
self.ai_core_v2_client = AIAPIV2Client(
base_url=aic_service_key["serviceurls"]["AI_API_URL"] + "/v2",
auth_url=aic_service_key["url"] + "/oauth/token",
client_id=aic_service_key['clientid'],
client_secret=aic_service_key['clientsecret'],
resource_group=resource_group
)
#print("TOKEN")
self.token = self.ai_core_v2_client.rest_client.get_token()
#print(self.token)
self.headers = {
"Authorization": self.token,
'ai-resource-group': resource_group,
"Content-Type": "application/json"}
print("2. AI API client instance created.")
def csv_validation(self, df_from_csv):
# Statistical properties used to generate the dataset
# Mean, std, min, max
v01 = [45.98, 17.29, 21, 74] # Temperature
v02 = [0.13, 0.1, 0.01, 0.61] # CO2 Partial Pressure
v03 = [7.6, 0.64, 6.21, 8.57] # pH
v04 = [34.31, 20.37, 2, 70] # Sulphate ion concentration
v05 = [3168.79, 2382.86, 66, 7571.14] # Chloride ion concentration
v06 = [0.42, 0.34, 0.01, 0.9] # Basic sediment and water
v07 = [8.54, 5.17, 0.2, 17.54] # Million Cubic Feet per day of gas
v08 = [684.48, 337.45, 125, 1565.97] # Barrel of Oil production per day
v09 = [1269.38, 1965.96, 1, 9328] # Barrel of Water production per day
v10 = [1.17, 0.97, 0.04, 2.79] # Iron content
v11 = [2404.93, 1161.44, 152.5, 4209] # Total Alkalinity as HCO_3
v12 = [880.93, 569.82, 65, 2050] # Operating pressure
v13 = [1.11, 0.79, 0.02, 2.56] # Calcium concentration
decimal_validation = [CustomElementValidation(lambda d: isinstance(d, float), 'is not decimal')]
int_validation = [CustomElementValidation(lambda i: isinstance(i, int), 'is not integer')]
null_validation = [CustomElementValidation(lambda d: d is not None, 'this field cannot be null')]
#Maximum offset applied to the variables is 25%
schema = Schema([
Column('loc_id', [InRangeValidation(0,1000)]+null_validation+int_validation),
Column('idx', [InRangeValidation(0,1000)]+null_validation+int_validation),
Column('date', [DateFormatValidation('%Y-%m-%d')]+null_validation),
Column('corr_depth', [InRangeValidation(0,50)]+null_validation+decimal_validation),
Column('v01', [InRangeValidation(v01[2],v01[3]*1.25)]+null_validation+decimal_validation),
Column('v02', [InRangeValidation(v02[2],v02[3]*1.25)]+null_validation+decimal_validation),
Column('v03', [InRangeValidation(v03[2],v03[3]*1.25)]+null_validation+decimal_validation),
Column('v04', [InRangeValidation(v04[2],v04[3]*1.25)]+null_validation+decimal_validation),
Column('v05', [InRangeValidation(v05[2],v05[3]*1.25)]+null_validation+decimal_validation),
Column('v06', [InRangeValidation(v06[2],v06[3]*1.25)]+null_validation+decimal_validation),
Column('v07', [InRangeValidation(v07[2],v07[3]*1.25)]+null_validation+decimal_validation),
Column('v08', [InRangeValidation(v08[2],v08[3]*1.25)]+null_validation+decimal_validation),
Column('v09', [InRangeValidation(v09[2],v09[3]*1.25)]+null_validation+decimal_validation),
Column('v10', [InRangeValidation(v10[2],v10[3]*1.25)]+null_validation+decimal_validation),
Column('v11', [InRangeValidation(v11[2],v11[3]*1.25)]+null_validation+decimal_validation),
Column('v12', [InRangeValidation(v12[2],v12[3]*1.25)]+null_validation+decimal_validation),
Column('v13', [InRangeValidation(v13[2],v13[3]*1.25)]+null_validation+decimal_validation)
])
errors = schema.validate(df_from_csv)
return errors
def read_and_validate_dataset(self, data_source) -> None:
print("3. Reading and validating input dataset.")
logging.info(f"{data_source}")
csv_files = glob.glob(os.path.join(data_source, "*.csv"))
dfs = []
for csv in csv_files:
df = pd.read_csv(csv)
dfs.append(df)
self.dataset_all = pd.concat(dfs, ignore_index=True)
self.dataset_all = self.dataset_all.sample(frac=1).reset_index(drop=True)
print(f"No. of training examples: {self.dataset_all.shape[0]}")
errors = self.csv_validation(self.dataset_all)
if len(errors) == 0:
print("3. Dataset validation succeeded!")
else:
print("3. Dataset validation failed! Number of identified issues: "+str(len(errors)))
#print("Check the log for the details about the identified issues.") #Logging to be implemented
exit(1)
def register_artifact(self, artifact_s3_path, artifact_type, description) -> None:
print("4. Registering artifact.")
# Set the artifact configuration
artifact = {
"name": self.dataset_name,
"kind": artifact_type, #For example Artifact.Kind.DATASET
"url": "ai://default"+artifact_s3_path,
"description": description,
"scenarioId": self.scenario_id
}
# Store the artifact response to retrieve the id for the training configuration
artifact_url = f'{self.ai_core_v2_client.base_url}/lm/artifacts'
resp = requests.post(url=artifact_url, json=artifact, headers=self.headers)
self.artifact_resp = resp.json()
print(self.artifact_resp)
if self.artifact_resp['id'] is not None:
self.artifact_id = self.artifact_resp['id']
print(self.artifact_id)
print("4. Artifact registered.")
else:
print("4. Registering artifact failed!")
exit(1)
def create_training_conf(self) -> None:
print("5. Creating training configuration.")
#scenarios = self.ai_core_v2_client.scenario.query()
train_configuration = {
"name": "pipeline-corr-train-conf",
"scenarioId": self.scenario_id,
"executableId": self.executable_name,
"parameterBindings": [],
"inputArtifactBindings": [
{
"key": self.dataset_name,
"artifactId": self.artifact_id
}
]
}
# Store the configuration response to access the id to create an execution
conf_url = f'{self.ai_core_v2_client.base_url}/lm/configurations'
resp = requests.post(url=conf_url, json=train_configuration, headers=self.headers)
self.train_config_resp = resp.json()
print(self.train_config_resp)
if self.train_config_resp['id'] is not None:
print("5. Creating training configuration.")
else:
print("5. Creating training configuration failed!")
exit(1)
def start_execution(self) -> None:
print("6. Starting training execution.")
execution_url = f'{self.ai_core_v2_client.base_url}/lm/configurations/'\
+self.train_config_resp['id']+"/executions"
resp = requests.post(url=execution_url, headers=self.headers)
self.execution_resp = resp.json()
print(self.execution_resp)
if self.execution_resp['id'] is not None:
print("6. Training execution started.")
else:
print("6. Training execution failed!")
exit(1)
def get_execution_status(self) -> None:
print("7. Checking execution status.")
status = None
execution_id = self.execution_resp["id"]
while status != "COMPLETED" and status != "DEAD":
# Sleep for 5 secs to avoid overwhelming the API with requests
time.sleep(5)
# Clear outputs to reduce clutter
#clear_output(wait=True)
status_url = f'{self.ai_core_v2_client.base_url}/lm/executions/{execution_id}'
resp = requests.get(url=status_url, headers=self.headers)
execution = resp.json()
#print(execution['status'])
status = execution['status']
print('...... Execution status ......', flush=False)
print(f"Training status: {status}")
if status == "COMPLETED":
print(f"Training complete for execution [{execution_id}]!")
output_artifact = execution["outputArtifacts"][0]
self.training_output = {
"id": output_artifact["id"],
"name": output_artifact["name"],
"url": output_artifact["url"]
}
print(self.training_output)
else:
print(f"Training failed for execution [{execution_id}]!")
exit(1)
def get_execution_metrics(self) -> None:
print("8. Retrieving execution metrics.")
execution_id = self.execution_resp["id"]
metric_url = f'{self.ai_core_v2_client.base_url}/lm/metrics?executionIds={execution_id}'
resp = requests.get(url=metric_url, headers=self.headers)
#print(resp)
self.metric_resp = resp.json()
#print(self.metric_resp)
for m in self.metric_resp["resources"]:
for metric in m["metrics"]:
print(metric["name"])
print(metric["value"])
print("8. Execution metrics retrieved.")
def create_serving_conf(self, resource_group) -> None:
print("9. Creating deployment configuration to test the new model.")
self.headers["ai-resource-group"] = resource_group
#print(self.model_name, self.training_output["id"])
serve_configuration = {
"name": "pipeline-corr-serving-conf",
"scenarioId": self.scenario_id,
"executableId": self.serving_executable_name,
"parameterBindings": [
{
"key": "greetmessage",
"value": "Hi AI Core server"
}
],
"inputArtifactBindings": [
{
"key": self.model_name,
"artifactId": self.training_output["id"]
}
]
}
serve_conf_url = f'{self.ai_core_v2_client.base_url}/lm/configurations'
resp = requests.post(url=serve_conf_url, json=serve_configuration, headers=self.headers)
self.serve_config_resp = resp.json()
#print(self.serve_config_resp)
if self.serve_config_resp["id"] is not None:
print(self.serve_config_resp)
print("9. Deployment configuration created.")
else:
print("9. Deployment configuration creation failed!")
exit(1)
def deploy_model(self, resource_group) -> None: #To be used to test the model deployment
print("10. Deploying new model.")
self.headers["ai-resource-group"] = resource_group
metrics = self.metric_resp["resources"][0]["metrics"]
metric_value = metrics[0]["value"]
print("MSE: "+str(metric_value))
if(metric_value < float(self.metric_threshold)):
self.create_serving_conf(resource_group) ## Create serving configuration
deployment_url = f'{self.ai_core_v2_client.base_url}/lm/configurations/{self.serve_config_resp["id"]}/deployments'
#print(deployment_url)
resp = requests.post(url=deployment_url, headers=self.headers)
self.deployment_resp = resp.json()
print(self.deployment_resp)
status = self.check_deployment(self.deployment_resp["id"])
if status == "DEAD":
print("10. Deployment failed! Check the logs for more details.")
exit(1)
else:
print("10. Deployment is not possible because of model lower accuracy!")
exit(1)
def check_deployment(self, deployment_id):
# Poll deployment status
status = None
elapsed_time = 0
while status != "RUNNING" and status != "DEAD" and status != "STOPPED":
start = time.time()
time.sleep(5)
#clear_output(wait=True)
status_url = f'{self.ai_core_v2_client.base_url}/lm/deployments/{deployment_id}'
#print(status_url)
resp = requests.get(url=status_url, headers=self.headers)
deployment = resp.json()
status = deployment["status"]
print('...... Deployment status ......', flush=False)
print(deployment["status"])
#print(deployment.status_details)
end = time.time()
elapsed_time += (end-start)
if elapsed_time > 600:
print("Deployment pending for too long. Stopping...")
break
if deployment["status"] == "RUNNING":
print(f"Deployment with {deployment_id} complete!")
# Allow some time for deployment URL to get ready
time.sleep(10)
return status
def test_deployment(self, resource_group, deployment_id) -> None:
print("11. Testing the deployment.")
self.headers["ai-resource-group"] = resource_group
X, y = self.dataset_all.drop(['corr_depth','date'], axis=1),\
self.dataset_all[['corr_depth']].values.ravel()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.001, random_state=13)
print("Number of test records: "+str(X_test.size))
get_deployment_url = f'{self.ai_core_v2_client.base_url}/lm/deployments/{deployment_id}'
deploymet_resp = requests.get(url=get_deployment_url, headers=self.headers)
deployment_url = deploymet_resp.json()['deploymentUrl']
endpoint = f"{deployment_url}/v2/predict"
print(endpoint)
def apply_request(row):
#print(row)
response = requests.post(endpoint, headers=self.headers, json=row.to_dict())
#print(response.json())
return response.json()[0]
X_test['pred'] = X_test.apply(apply_request, axis=1)
#print(X_test)
mse = mean_squared_error(y_test, X_test['pred'])
print('Inference result:', mse)
if mse < float(self.metric_threshold):
print("11. Deployment validation passed!")
else:
print("11. Deployment validation failed!") #Stop execution and pipeline
self.stop_deployment(resource_group)
exit(1)
def stop_deployment(self, resource_group) -> None:
print("12. Stopping the deployment.")
self.headers["ai-resource-group"] = resource_group
delete_config = {
"targetStatus": "STOPPED"
}
stop_url = f'{self.ai_core_v2_client.base_url}/lm/deployments/{self.deployment_resp["id"]}'
resp = requests.patch(url=stop_url, json=delete_config, headers=self.headers)
delete_resp = resp.json()
status = self.check_deployment(delete_resp["id"])
if status == "STOPPED":
print("12. Deployment stopped gracefully.")
else:
print("12. Something went wrong stopping the deployment!")
#exit(1)
def switch_model(self, resource_group) -> None:
print("13. Switching the model under the current deployment.")
self.headers["ai-resource-group"] = resource_group
metrics = self.metric_resp["resources"][0]["metrics"]
metric_value = metrics[0]["value"]
print("MSE: "+str(metric_value))
if(metric_value < float(self.metric_threshold)):
self.create_serving_conf(resource_group)
patch_config = {
"configurationId": self.serve_config_resp["id"]
}
patch_url = f'{self.ai_core_v2_client.base_url}/lm/deployments/{self.current_deployment_id}'
resp = requests.patch(url=patch_url, json=patch_config, headers=self.headers)
patch_resp = resp.json()
print(patch_resp)
status = self.check_deployment(patch_resp["id"])
if status == "RUNNING":
print("13. Deployment update completed successfully!")
if status == "DEAD":
print("13. Deployment update failed!")
exit(1)
else:
print("13. Deployment update is not possible because of model lower accuracy!")
exit(1)
def run_workflow(self) -> None:
"""
Run the pipeline with all the necessary steps
"""
cond1 = self.artifact_id == "None" and self.dataset_path_train == "None"
cond2 = self.artifact_id != "None" and self.dataset_path_train != "None"
if (not(cond1 or cond2)):
## Initialize parameters with prod templates content
self.get_github_credentials()
self.get_temp_conf()
## Create API client
self.create_api_client(self.resource_group_dev)
## Register a new dataset if needed
if (self.artifact_id == "None" and len(self.dataset_path_train) != "None"):
self.register_artifact(self.dataset_path_train, \
"dataset", "Pipeline corrosion dataset")
## Create a new training configuration
self.create_training_conf()
## Start a new execution/training
self.start_execution()
## Get execution status
self.get_execution_status()
## Get the metrics of the last execution
self.get_execution_metrics()
## It deploys the new trained model for testing purpose
self.deploy_model(self.resource_group_dev)
## Read and validate the test dataset
self.read_and_validate_dataset(self.data_source_test)
## Test the previous deployment in a test resource group
self.test_deployment(self.resource_group_dev, self.deployment_resp["id"])
## Once the test is completed the deployment is stopped
self.stop_deployment(self.resource_group_dev)
## Update the current deployment in the prod resource group
self.switch_model(self.resource_group_dev) #If the previous test is ok,
#then it updates the current deployment
elif cond1:
print("Missing parameters! Input Artifact ID and path cannot be empty!")
elif cond2:
print("Too many parameters! Specify the Input Artifact ID or path!")
if __name__ == "__main__":
train_obj = ct_cd_pipeline()
train_obj.run_workflow()