This repository has been archived by the owner on Sep 3, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathdata_process.py
175 lines (146 loc) · 6.6 KB
/
data_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import cv2
import numpy as np
from six.moves import cPickle as Pickle
import csv
DATA_FOLDER = 'data'
image_size = 32
pixel_depth = 255
pickle_extension = '.pickle'
num_classes = 48
image_per_class = 500
def get_folders(path):
data_folders = [os.path.join(path, d) for d in sorted(os.listdir(path))
if os.path.isdir(os.path.join(path, d))]
if len(data_folders) != num_classes:
raise Exception(
'Expected %d folders, one per class. Found %d instead.' % (
num_classes, len(data_folders)))
return data_folders
def load_letter(folder, min_num_images):
"""Load the data for a single letter label."""
image_files = os.listdir(folder)
dataset = np.ndarray(shape=(len(image_files), image_size, image_size),
dtype=np.float32)
print(folder)
image_index = -1
for image_index, image in enumerate(image_files):
image_file = os.path.join(folder, image)
try:
image_data = 1 * (cv2.imread(image_file, cv2.IMREAD_UNCHANGED).astype(float) > pixel_depth / 2)
if image_data.shape != (image_size, image_size):
raise Exception('Unexpected image shape: %s' % str(image_data.shape))
dataset[image_index, :, :] = image_data
except IOError as err:
print('Could not read:', image_file, ':', err, '- it\'s ok, skipping.')
num_images = image_index + 1
dataset = dataset[0:num_images, :, :]
if num_images < min_num_images:
raise Exception('Many fewer images than expected: %d < %d' % (num_images, min_num_images))
print('Full dataset tensor:', dataset.shape)
print('Mean:', np.mean(dataset))
print('Standard deviation:', np.std(dataset))
return dataset
def maybe_pickle(data_folders, min_num_images_per_class, force=False):
dataset_names = []
for folder in data_folders:
set_filename = folder + pickle_extension
dataset_names.append(folder)
if os.path.exists(set_filename) and not force:
# You may override by setting force=True.
print('%s already present - Skipping pickling.' % set_filename)
else:
# print('Pickling %s.' % set_filename)
dataset = load_letter(folder, min_num_images_per_class)
try:
with open(set_filename, 'wb') as f:
Pickle.dump(dataset, f, Pickle.HIGHEST_PROTOCOL)
except Exception as e:
print('Unable to save data to', set_filename, ':', e)
return dataset_names
def make_arrays(nb_rows, img_size):
if nb_rows:
dataset = np.ndarray((nb_rows, img_size, img_size), dtype=np.float32)
labels = np.ndarray(nb_rows, dtype=np.int32)
else:
dataset, labels = None, None
return dataset, labels
def merge_datasets(pickle_files, train_size, test_size=0, valid_size=0):
num_classes = len(pickle_files)
print(num_classes)
valid_dataset, valid_labels = make_arrays(valid_size, image_size)
test_dataset, test_labels = make_arrays(test_size, image_size)
train_dataset, train_labels = make_arrays(train_size, image_size)
valid_size_per_class = valid_size // num_classes
test_size_per_class = test_size // num_classes
train_size_per_class = train_size // num_classes
print(valid_size_per_class, test_size_per_class, train_size_per_class)
start_valid, start_test, start_train = 0, valid_size_per_class, (valid_size_per_class + test_size_per_class)
end_valid = valid_size_per_class
end_test = end_valid + test_size_per_class
end_train = end_test + train_size_per_class
print(start_valid, end_valid)
print(start_test, end_test)
print(start_train,end_train)
s_valid, s_test, s_train = 0, 0, 0
e_valid, e_test, e_train = valid_size_per_class, test_size_per_class, train_size_per_class
temp = []
for label, pickle_file in enumerate(pickle_files):
temp.append([label, pickle_file[-4:]])
try:
with open(pickle_file + pickle_extension, 'rb') as f:
letter_set = Pickle.load(f)
# let's shuffle the letters to have random validation and training set
np.random.shuffle(letter_set)
if valid_dataset is not None:
valid_letter = letter_set[:end_valid, :, :]
valid_dataset[s_valid:e_valid, :, :] = valid_letter
valid_labels[s_valid:e_valid] = label
s_valid += valid_size_per_class
e_valid += valid_size_per_class
if test_dataset is not None:
test_letter = letter_set[start_test:end_test, :, :]
test_dataset[s_test:e_test, :, :] = test_letter
test_labels[s_test:e_test] = label
s_test += test_size_per_class
e_test += test_size_per_class
train_letter = letter_set[start_train:end_train, :, :]
train_dataset[s_train:e_train, :, :] = train_letter
train_labels[s_train:e_train] = label
s_train += train_size_per_class
e_train += train_size_per_class
except Exception as e:
print('Unable to process data from', pickle_file, ':', e)
raise
with open('classes.csv', 'w') as my_csv:
writer = csv.writer(my_csv, delimiter=',')
writer.writerows(temp)
return valid_dataset, valid_labels, test_dataset, test_labels, train_dataset, train_labels
data_folders = get_folders(DATA_FOLDER)
train_datasets = maybe_pickle(data_folders, image_per_class, True)
train_size = int(image_per_class * num_classes * 0.7)
test_size = int(image_per_class * num_classes * 0.2)
valid_size = int(image_per_class * num_classes * 0.1)
valid_dataset, valid_labels, test_dataset, test_labels, train_dataset, train_labels = merge_datasets(
train_datasets, train_size, test_size, valid_size)
print('Training set', train_dataset.shape, train_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
pickle_file = 'data.pickle'
try:
f = open(pickle_file, 'wb')
save = {
'train_dataset': train_dataset,
'train_labels': train_labels,
'valid_dataset': valid_dataset,
'valid_labels': valid_labels,
'test_dataset': test_dataset,
'test_labels': test_labels,
}
Pickle.dump(save, f, Pickle.HIGHEST_PROTOCOL)
f.close()
except Exception as e:
print('Unable to save data to', pickle_file, ':', e)
raise
statinfo = os.stat(pickle_file)
print('Compressed pickle size:', statinfo.st_size)