Warning: This is an unofficial API document by kabeor, If there are any mistakes, welcome to ask.
注意: 这是由kabeor制作的非官方API参考文档,如有错误欢迎提出
最近准备用开源的反汇编引擎做个项目,研究了OllyDebug的ODDisasm,disasm与assembl部分代码的思想都很值得学习,但毕竟是2000年的产物,指令集只支持x86,也没有对语义的深度分析,于是转向了对Capstone的研究。
Capstone反汇编引擎可以说是如今世界上最优秀的反汇编引擎,IDA,Radare2,Qemu等著名项目都使用了Capstone Engine,所以选择它来开发是一个不错的选择。 但在开发时发现官方并未给出详细API文档,网上也没有类似的分析,因此想到自己阅读源码和试验,由此写出了一个简单的非官方版本的API手册,希望能与大家分享。
Capstone官网: http://www.capstone-engine.org
源码: https://github.com/aquynh/capstone/archive/4.0.1.zip
下载后解压 文件结构如下:
. <- 主要引擎core engine + README + 编译文档COMPILE.TXT 等
├── arch <- 各语言反编译支持的代码实现
│ ├── AArch64 <- ARM64 (aka ARMv8) 引擎
│ ├── ARM <- ARM 引擎
│ ├── EVM <- Ethereum 引擎
│ ├── M680X <- M680X 引擎
│ ├── M68K <- M68K 引擎
│ ├── Mips <- Mips 引擎
│ ├── PowerPC <- PowerPC 引擎
│ ├── Sparc <- Sparc 引擎
│ ├── SystemZ <- SystemZ 引擎
│ ├── TMS320C64x <- TMS320C64x 引擎
│ ├── X86 <- X86 引擎
│ └── XCore <- XCore 引擎
├── bindings <- 中间件
│ ├── java <- Java 中间件 + 测试代码
│ ├── ocaml <- Ocaml 中间件 + 测试代码
│ └── python <- Python 中间件 + 测试代码
├── contrib <- 社区代码
├── cstool <- Cstool 检测工具源码
├── docs <- 文档,主要是capstone的实现思路
├── include <- C头文件
├── msvc <- Microsoft Visual Studio 支持(Windows)
├── packages <- Linux/OSX/BSD包
├── windows <- Windows 支持(Windows内核驱动编译)
├── suite <- Capstone开发测试工具
├── tests <- C语言测试用例
└── xcode <- Xcode 支持 (MacOSX 编译)
下面演示Windows10使用Visual Studio2019编译
复制msvc文件夹到一个比较清爽的位置(强迫症专用),内部结构如下:
VS打开capstone.sln项目文件,解决方案自动载入这些
可以看到支持的所有语言都在这里了,如果都需要的话,直接编译就好了,只需要其中几种,则右键解决方案->属性->配置属性 如下
生成选项中勾选你需要的支持项即可 编译后会在当前文件夹Debug目录下生成capstone.lib静态编译库和capstone.dll动态库这样就可以开始使用Capstone进行开发了
如果不想自己编译,官方也提供了官方编译版本 Win32: https://github.com/aquynh/capstone/releases/download/4.0.1/capstone-4.0.1-win32.zip Win64: https://github.com/aquynh/capstone/releases/download/4.0.1/capstone-4.0.1-win64.zip
选x32或x64将影响后面开发的位数
新建一个VS项目,将..\capstone-4.0.1\include\capstone中的头文件以及编译好的lib和dll文件全部拷贝到新建项目的主目录下
在VS解决方案中,头文件添加现有项capstone.h,资源文件中添加capstone.lib,重新生成解决方案
那么现在来测试一下我们自己的capstone引擎吧
主文件写入如下代码
#include <iostream>
#include <stdio.h>
#include <cinttypes>
#include "capstone.h"
using namespace std;
#define CODE "\x55\x48\x8b\x05\xb8\x13\x00\x00"
int main(void)
{
csh handle;
cs_insn* insn;
size_t count;
if (cs_open(CS_ARCH_X86, CS_MODE_64, &handle)) {
printf("ERROR: Failed to initialize engine!\n");
return -1;
}
count = cs_disasm(handle, (unsigned char*)CODE, sizeof(CODE) - 1, 0x1000, 0, &insn);
if (count) {
size_t j;
for (j = 0; j < count; j++) {
printf("0x%""Ix"":\t%s\t\t%s\n", insn[j].address, insn[j].mnemonic, insn[j].op_str);
}
cs_free(insn, count);
}
else
printf("ERROR: Failed to disassemble given code!\n");
cs_close(&handle);
return 0;
}
事实上这是官方给出的C语言开发唯一几个例子之一,但注意到代码cs_open(CS_ARCH_X86, CS_MODE_64, &handle),测试的是archx64的反编译,因此编译选项也需要设置为x64,除此以外,如果你的项目像我一样是c++开发,那么printf("0x%""Ix"":\t%s\t\t%s\n", insn[j].address, insn[j].mnemonic, insn[j].op_str);处官方给出的"0x%"PRIx64":\t%s\t\t%s\n"应修改为我这里的"0x%""Ix"":\t%s\t\t%s\n",这是inttypes支持问题。
用于生成调用capstone API的句柄
size_t csh
用法:
csh handle;
架构选择
enum cs_arch {
CS_ARCH_ARM = 0, ///< ARM 架构 (包括 Thumb, Thumb-2)
CS_ARCH_ARM64, ///< ARM-64, 也叫 AArch64
CS_ARCH_MIPS, ///< Mips 架构
CS_ARCH_X86, ///< X86 架构 (包括 x86 & x86-64)
CS_ARCH_PPC, ///< PowerPC 架构
CS_ARCH_SPARC, ///< Sparc 架构
CS_ARCH_SYSZ, ///< SystemZ 架构
CS_ARCH_XCORE, ///< XCore 架构
CS_ARCH_M68K, ///< 68K 架构
CS_ARCH_TMS320C64X, ///< TMS320C64x 架构
CS_ARCH_M680X, ///< 680X 架构
CS_ARCH_EVM, ///< Ethereum 架构
CS_ARCH_MAX,
CS_ARCH_ALL = 0xFFFF, // All 架构 - for cs_support()
} cs_arch;
用法:API中cs_arch参数填入枚举内容,如API中cs_open(cs_arch arch, cs_mode mode, csh *handle);第一个参数填CS_ARCH_X86则支持X86 架构
模式选择
enum cs_mode {
CS_MODE_LITTLE_ENDIAN = 0, ///< little-endian 模式 (default 模式)
CS_MODE_ARM = 0, ///< 32-bit ARM
CS_MODE_16 = 1 << 1, ///< 16-bit 模式 (X86)
CS_MODE_32 = 1 << 2, ///< 32-bit 模式 (X86)
CS_MODE_64 = 1 << 3, ///< 64-bit 模式 (X86, PPC)
CS_MODE_THUMB = 1 << 4, ///< ARM's Thumb 模式, 包括 Thumb-2
CS_MODE_MCLASS = 1 << 5, ///< ARM's Cortex-M 系列
CS_MODE_V8 = 1 << 6, ///< ARM解码方式ARMv8 A32
CS_MODE_MICRO = 1 << 4, ///< MicroMips 模式 (MIPS)
CS_MODE_MIPS3 = 1 << 5, ///< Mips III ISA
CS_MODE_MIPS32R6 = 1 << 6, ///< Mips32r6 ISA
CS_MODE_MIPS2 = 1 << 7, ///< Mips II ISA
CS_MODE_V9 = 1 << 4, ///< SparcV9 模式 (Sparc)
CS_MODE_QPX = 1 << 4, ///< Quad Processing eXtensions 模式 (PPC)
CS_MODE_M68K_000 = 1 << 1, ///< M68K 68000 模式
CS_MODE_M68K_010 = 1 << 2, ///< M68K 68010 模式
CS_MODE_M68K_020 = 1 << 3, ///< M68K 68020 模式
CS_MODE_M68K_030 = 1 << 4, ///< M68K 68030 模式
CS_MODE_M68K_040 = 1 << 5, ///< M68K 68040 模式
CS_MODE_M68K_060 = 1 << 6, ///< M68K 68060 模式
CS_MODE_BIG_ENDIAN = 1 << 31, ///< big-endian 模式
CS_MODE_MIPS32 = CS_MODE_32, ///< Mips32 ISA (Mips)
CS_MODE_MIPS64 = CS_MODE_64, ///< Mips64 ISA (Mips)
CS_MODE_M680X_6301 = 1 << 1, ///< M680X Hitachi 6301,6303 模式
CS_MODE_M680X_6309 = 1 << 2, ///< M680X Hitachi 6309 模式
CS_MODE_M680X_6800 = 1 << 3, ///< M680X Motorola 6800,6802 模式
CS_MODE_M680X_6801 = 1 << 4, ///< M680X Motorola 6801,6803 模式
CS_MODE_M680X_6805 = 1 << 5, ///< M680X Motorola/Freescale 6805 模式
CS_MODE_M680X_6808 = 1 << 6, ///< M680X Motorola/Freescale/NXP 68HC08 模式
CS_MODE_M680X_6809 = 1 << 7, ///< M680X Motorola 6809 模式
CS_MODE_M680X_6811 = 1 << 8, ///< M680X Motorola/Freescale/NXP 68HC11 模式
CS_MODE_M680X_CPU12 = 1 << 9, ///< M680X Motorola/Freescale/NXP CPU12
///< 用于 M68HC12/HCS12
CS_MODE_M680X_HCS08 = 1 << 10, ///< M680X Freescale/NXP HCS08 模式
} cs_mode;
用法:API中cs_mode参数填入枚举内容,如API中cs_open(cs_arch arch, cs_mode mode, csh *handle);第二个参数填CS_MODE_64则支持X64模式
内存操作
struct cs_opt_mem {
cs_malloc_t malloc;
cs_calloc_t calloc;
cs_realloc_t realloc;
cs_free_t free;
cs_vsnprintf_t vsnprintf;
} cs_opt_mem;
用法:可使用用户自定义的malloc/calloc/realloc/free/vsnprintf()函数,默认使用系统自带malloc(), calloc(), realloc(), free() & vsnprintf()
自定义助记符
struct cs_opt_mnem {
/// 需要自定义的指令ID
unsigned int id;
/// 自定义的助记符
const char *mnemonic;
} cs_opt_mnem;
反编译的运行时选项
enum cs_opt_type {
CS_OPT_INVALID = 0, ///< 无特殊要求
CS_OPT_SYNTAX, ///< 汇编输出语法
CS_OPT_DETAIL, ///< 将指令结构分解为多个细节
CS_OPT_MODE, ///< 运行时改变引擎模式
CS_OPT_MEM, ///< 用户定义的动态内存相关函数
CS_OPT_SKIPDATA, ///< 在反汇编时跳过数据。然后引擎将处于SKIPDATA模式
CS_OPT_SKIPDATA_SETUP, ///< 为SKIPDATA选项设置用户定义函数
CS_OPT_MNEMONIC, ///<自定义指令助记符
CS_OPT_UNSIGNED, ///< 以无符号形式打印立即操作数
} cs_opt_type;
用法:API cs_option(csh handle, cs_opt_type type, size_t value);中第二个参数
运行时选项值(与cs_opt_type关联)
enum cs_opt_value {
CS_OPT_OFF = 0, ///< 关闭一个选项 - 默认为CS_OPT_DETAIL, CS_OPT_SKIPDATA, CS_OPT_UNSIGNED.
CS_OPT_ON = 3, ///< 打开一个选项 (CS_OPT_DETAIL, CS_OPT_SKIPDATA).
CS_OPT_SYNTAX_DEFAULT = 0, ///< 默认asm语法 (CS_OPT_SYNTAX).
CS_OPT_SYNTAX_INTEL, ///< X86 Intel asm语法 - 默认开启 X86 (CS_OPT_SYNTAX).
CS_OPT_SYNTAX_ATT, ///< X86 ATT 汇编语法 (CS_OPT_SYNTAX).
CS_OPT_SYNTAX_NOREGNAME, ///< 只打印寄存器名和编号 (CS_OPT_SYNTAX)
CS_OPT_SYNTAX_MASM, ///< X86 Intel Masm 语法 (CS_OPT_SYNTAX).
} cs_opt_value;
用法:API cs_option(csh handle, cs_opt_type type, size_t value);中第三个参数
通用指令操作数类型,在所有架构中保持一致
enum cs_op_type {
CS_OP_INVALID = 0, ///< 未初始化/无效的操作数
CS_OP_REG, ///< 寄存器操作数
CS_OP_IMM, ///< 立即操作数
CS_OP_MEM, ///< 内存操作数
CS_OP_FP, ///< 浮点数
} cs_op_type;
目前开放的API中未调用
通用指令操作数访问类型,在所有架构中保持一致 可以组合访问类型,例如:CS_AC_READ | CS_AC_WRITE
enum cs_ac_type {
CS_AC_INVALID = 0, ///< 未初始化/无效的访问类型
CS_AC_READ = 1 << 0, ///< 操作数从内存或寄存器中读取
CS_AC_WRITE = 1 << 1, ///< 操作数从内存或寄存器中写入
} cs_ac_type;
目前开放的API中未调用
公共指令组,在所有架构中保持一致
cs_group_type {
CS_GRP_INVALID = 0, ///< 未初始化/无效指令组
CS_GRP_JUMP, ///< 所有跳转指令(条件跳转+直接跳转+间接跳转)
CS_GRP_CALL, ///< 所有调用指令
CS_GRP_RET, ///< 所有返回指令
CS_GRP_INT, ///< 所有中断指令(int+syscall)
CS_GRP_IRET, ///< 所有中断返回指令
CS_GRP_PRIVILEGE, ///< 所有特权指令
CS_GRP_BRANCH_RELATIVE, ///< 所有相关分支指令
} cs_group_type;
目前开放的API中未调用
用户自定义设置SKIPDATA选项
struct cs_opt_skipdata {
/// Capstone认为要跳过的数据是特殊的“指令”
/// 用户可以在这里指定该指令的“助记符”字符串
/// 默认情况下(@mnemonic为NULL), Capstone使用“.byte”
const char *mnemonic;
/// 用户定义的回调函数,当Capstone命中数据时调用
/// 如果这个回调返回的值是正数(>0),Capstone将跳过这个字节数并继续。如果回调返回0,Capstone将停止反汇编并立即从cs_disasm()返回
/// 注意:如果这个回调指针为空,Capstone会根据架构跳过一些字节,如下所示:
/// Arm: 2 bytes (Thumb mode) or 4 bytes.
/// Arm64: 4 bytes.
/// Mips: 4 bytes.
/// M680x: 1 byte.
/// PowerPC: 4 bytes.
/// Sparc: 4 bytes.
/// SystemZ: 2 bytes.
/// X86: 1 bytes.
/// XCore: 2 bytes.
/// EVM: 1 bytes.
cs_skipdata_cb_t callback; // 默认值为 NULL
/// 用户自定义数据将被传递给@callback函数指针
void *user_data;
} cs_opt_skipdata;
目前开放的API中未调用
注意:只有当CS_OPT_DETAIL = CS_OPT_ON时,cs_detail中的所有信息才可用
在arch/ARCH/ARCHDisassembler.c的ARCH_getInstruction中初始化为memset(., 0, offsetof(cs_detail, ARCH)+sizeof(cs_ARCH))
如果cs_detail发生了变化,特别是在union之后添加了字段,那么相应地更新arch/ arch/ archdisassembly .c
struct cs_detail {
uint16_t regs_read[12]; ///< 这个参数读取隐式寄存器列表
uint8_t regs_read_count; ///< 这个参数读取隐式寄存器计数
uint16_t regs_write[20]; ///< 这个参数修改隐式寄存器列表
uint8_t regs_write_count; ///< 这个参数修改隐式寄存器计数
uint8_t groups[8]; ///< 此指令所属的指令组的列表
uint8_t groups_count; ///< 此指令所属的组的数
/// 特定于体系结构的信息
union {
cs_x86 x86; ///< X86 架构, 包括 16-bit, 32-bit & 64-bit 模式
cs_arm64 arm64; ///< ARM64 架构 (aka AArch64)
cs_arm arm; ///< ARM 架构 (包括 Thumb/Thumb2)
cs_m68k m68k; ///< M68K 架构
cs_mips mips; ///< MIPS 架构
cs_ppc ppc; ///< PowerPC 架构
cs_sparc sparc; ///< Sparc 架构
cs_sysz sysz; ///< SystemZ 架构
cs_xcore xcore; ///< XCore 架构
cs_tms320c64x tms320c64x; ///< TMS320C64x 架构
cs_m680x m680x; ///< M680X 架构
cs_evm evm; ///< Ethereum 架构
};
} cs_detail;
指令的详细信息
struct cs_insn {
/// 指令ID(基本上是一个用于指令助记符的数字ID)
/// 应在相应架构的头文件中查找'[ARCH]_insn' enum中的指令id,如ARM.h中的'arm_insn'代表ARM, X86.h中的'x86_insn'代表X86等…
/// 即使在CS_OPT_DETAIL = CS_OPT_OFF时也可以使用此信息
/// 注意:在Skipdata模式下,这个id字段的“data”指令为0
unsigned int id;
/// 指令地址 (EIP)
/// 即使在CS_OPT_DETAIL = CS_OPT_OFF时也可以使用此信息
uint64_t address;
/// 指令长度
/// 即使在CS_OPT_DETAIL = CS_OPT_OFF时也可以使用此信息
uint16_t size;
/// 此指令的机器码,其字节数由上面的@size表示
/// 即使在CS_OPT_DETAIL = CS_OPT_OFF时也可以使用此信息
uint8_t bytes[16];
/// 指令的Ascii文本助记符
/// 即使在CS_OPT_DETAIL = CS_OPT_OFF时也可以使用此信息
char mnemonic[CS_MNEMONIC_SIZE];
/// 指令操作数的Ascii文本
/// 即使在CS_OPT_DETAIL = CS_OPT_OFF时也可以使用此信息
char op_str[160];
/// cs_detail指针
/// 注意:只有同时满足以下两个要求时,detail指针才有效:
/// (1) CS_OP_DETAIL = CS_OPT_ON
/// (2) 引擎未处于Skipdata模式(CS_OP_SKIPDATA选项设置为CS_OPT_ON)
///
/// 注意2:当处于Skipdata模式或detail模式关闭时,即使这个指针不是NULL,它的内容仍然是不相关的。
cs_detail *detail;
} cs_insn;
Capstone API遇到的各类型的错误时cs_errno()的返回值
typedef enum cs_err {
CS_ERR_OK = 0, ///< 无错误
CS_ERR_MEM, ///< 内存不足: cs_open(), cs_disasm(), cs_disasm_iter()
CS_ERR_ARCH, ///< 不支持的架构: cs_open()
CS_ERR_HANDLE, ///<句柄不可用: cs_op_count(), cs_op_index()
CS_ERR_CSH, ///< csh参数不可用: cs_close(), cs_errno(), cs_option()
CS_ERR_MODE, ///< 无效的或不支持的模式: cs_open()
CS_ERR_OPTION, ///< 无效的或不支持的选项: cs_option()
CS_ERR_DETAIL, ///< 信息不可用,因为detail选项是关闭的
CS_ERR_MEMSETUP, ///< 动态内存管理未初始化(见 CS_OPT_MEM)
CS_ERR_VERSION, ///< 不支持版本 (bindings)
CS_ERR_DIET, ///< 在“diet”引擎中访问不相关的数据
CS_ERR_SKIPDATA, ///< 在SKIPDATA模式下访问与“数据”指令无关的数据
CS_ERR_X86_ATT, ///< X86 AT&T 语法不支持(在编译时退出)
CS_ERR_X86_INTEL, ///< X86 Intel 语法不支持(在编译时退出)
CS_ERR_X86_MASM, ///< X86 Intel 语法不支持(在编译时退出)
} cs_err;
void* (CAPSTONE_API *cs_malloc_t)(size_t size);
cs的动态内存分配,用于
struct cs_opt_mem {
cs_malloc_t malloc;
cs_calloc_t calloc;
cs_realloc_t realloc;
cs_free_t free;
cs_vsnprintf_t vsnprintf;
} cs_opt_mem;
cs_malloc_t定义于capstone.lib和capstone.dll的cs.c中,
在用户模式下,cs_mem_malloc默认使用系统malloc
Windows driver模式下,
cs_malloc_t cs_mem_malloc = cs_winkernel_malloc;
cs_winkernel_malloc定义于\capstone-4.0.1\windows\winkernel_mm.c,
实现代码
void * CAPSTONE_API cs_winkernel_malloc(size_t size)
{
// 长度不能分配为0
NT_ASSERT(size);
// FP; NonPagedPool用于支持 Windows 7
#pragma prefast(suppress : 30030) // 分配可执行的POOL_TYPE内存
size_t number_of_bytes = 0;
CS_WINKERNEL_MEMBLOCK *block = NULL;
// 特定的值能造成溢出
// 如果value中的和超出或低于类型容量,函数将返回NULL。
if (!NT_SUCCESS(RtlSizeTAdd(size, sizeof(CS_WINKERNEL_MEMBLOCK), &number_of_bytes))) {
return NULL;
}
block = (CS_WINKERNEL_MEMBLOCK *)ExAllocatePoolWithTag(
NonPagedPool, number_of_bytes, CS_WINKERNEL_POOL_TAG);
if (!block) {
return NULL;
}
block->size = size;
return block->data;
}
OSX kernel模式下,
cs_malloc_t cs_mem_malloc = kern_os_malloc;
,这里暂且不探讨。
void* (CAPSTONE_API *cs_calloc_t)(size_t nmemb, size_t size);
cs申请内存并初始化
用于struct cs_opt_mem
,定义于cs.c
用户模式: cs_calloc_t cs_mem_calloc = calloc;
,使用系统calloc
Windows driver模式: cs_calloc_t cs_mem_calloc = cs_winkernel_calloc;
实现代码
void * CAPSTONE_API cs_winkernel_calloc(size_t n, size_t size)
{
size_t total = n * size;
void *new_ptr = cs_winkernel_malloc(total);
if (!new_ptr) {
return NULL;
}
return RtlFillMemory(new_ptr, total, 0);
}
OSX kernel模式: cs_calloc_t cs_mem_calloc = cs_kern_os_calloc;
直接调用kern_os_malloc了
void* (CAPSTONE_API *cs_realloc_t)(void *ptr, size_t size);
cs重新分配内存
用于struct cs_opt_mem
,定义于cs.c
用户模式: cs_realloc_t cs_mem_realloc = realloc;
,调用系统realloc
Windows driver模式: cs_realloc_t cs_mem_realloc = cs_winkernel_realloc;
实现代码,可以看出是利用cs_winkernel_malloc重新申请
void * CAPSTONE_API cs_winkernel_realloc(void *ptr, size_t size)
{
void *new_ptr = NULL;
size_t current_size = 0;
size_t smaller_size = 0;
if (!ptr) {
return cs_winkernel_malloc(size);
}
new_ptr = cs_winkernel_malloc(size);
if (!new_ptr) {
return NULL;
}
current_size = CONTAINING_RECORD(ptr, CS_WINKERNEL_MEMBLOCK, data)->size;
smaller_size = (current_size < size) ? current_size : size;
RtlCopyMemory(new_ptr, ptr, smaller_size);
cs_winkernel_free(ptr);
return new_ptr;
}
OSX kernel模式: cs_realloc_t cs_mem_realloc = kern_os_realloc;
typedef void (CAPSTONE_API *cs_free_t)(void *ptr);
cs释放内存
用于struct cs_opt_mem
,定义于cs.c
用户模式: cs_free_t cs_mem_free = free;
,调用系统free
Windows driver模式: cs_free_t cs_mem_free = cs_winkernel_free;
实现代码
void CAPSTONE_API cs_winkernel_free(void *ptr)
{
if (ptr) {
ExFreePoolWithTag(CONTAINING_RECORD(ptr, CS_WINKERNEL_MEMBLOCK, data), CS_WINKERNEL_POOL_TAG);
}
}
OSX kernel模式: cs_free_t cs_mem_free = kern_os_free;
int (CAPSTONE_API *cs_vsnprintf_t)(char *str, size_t size, const char *format, va_list ap);
按size大小输出到字符串str中
用户模式: 值得注意的是,如果系统为wince,将使用_vsnprintf函数 vsnprintf ()和_vsnprintf()对于驱动程序都是可用的,但是它们有一些不同。 在需要返回值和设置空终止符时应使用vsnprintf()
Windows driver模式: cs_vsnprintf_t cs_vsnprintf = cs_winkernel_vsnprintf;
代码实现
int CAPSTONE_API cs_winkernel_vsnprintf(char *buffer, size_t count, const char *format, va_list argptr)
{
int result = _vsnprintf(buffer, count, format, argptr);
// _vsnprintf()在字符串被截断时返回-1,在整个字符串被存储但“buffer”末尾没有“\0”时返回“count”。在这两种情况下,都需要手动添加空终止符。
if (result == -1 || (size_t)result == count) {
buffer[count - 1] = '\0';
}
if (result == -1) {
// 在返回-1时,函数必须获取并返回一些本来要写入的字符。因此,通过重试使用temp buffer进行相同的转换,这个缓冲区就可能足够大来完成格式化,并且获得很多本应写入的字符。
char* tmp = cs_winkernel_malloc(0x1000);
if (!tmp) {
return result;
}
result = _vsnprintf(tmp, 0x1000, format, argptr);
NT_ASSERT(result != -1);
cs_winkernel_free(tmp);
}
return result;
}
OSX kernel模式: cs_vsnprintf_t cs_vsnprintf = vsnprintf;
,使用默认vsnprintf
size_t (CAPSTONE_API *cs_skipdata_cb_t)(const uint8_t *code, size_t code_size, size_t offset, void *user_data);
SKIPDATA选项的用户自定义回调函数。
code:包含要分解的代码的输入缓冲区。和传递给cs_disasm()的缓冲区相同。 code_size:上面的code缓冲区的大小(以字节为单位)。 offset:上面提到的输入缓冲区code中当前检查字节的位置。 user_data:用户数据通过cs_opt_skipdata结构中的@user_data字段传递给cs_option()。 return:返回要跳过的字节数,或者0表示立即停止反汇编。
cs_skipdata_cb_t在struct cs_opt_skipdata
中调用,下面来看一个例子
分析写在注释中
#include <stdio.h>
#include <stdlib.h>
#include "platform.h"
#include "capstone.h"
struct platform {
cs_arch arch;
cs_mode mode;
unsigned char* code;
size_t size;
const char* comment;
cs_opt_type opt_type;
cs_opt_value opt_value;
cs_opt_type opt_skipdata;
size_t skipdata;
};
static void print_string_hex(unsigned char* str, size_t len) //输出机器码
{
unsigned char* c;
printf("Code: ");
for (c = str; c < str + len; c++) {
printf("0x%02x ", *c & 0xff);
}
printf("\n");
}
static void test()
{
#define X86_CODE32 "\x8d\x4c\x32\x08\x01\xd8\x81\xc6\x34\x12\x00\x00\x00\x91\x92" //测试用机器码
#define RANDOM_CODE "\xed\x00\x00\x00\x00\x1a\x5a\x0f\x1f\xff\xc2\x09\x80\x00\x00\x00\x07\xf7\xeb\x2a\xff\xff\x7f\x57\xe3\x01\xff\xff\x7f\x57\xeb\x00\xf0\x00\x00\x24\xb2\x4f\x00\x78"
cs_opt_skipdata skipdata = {
// 把默认 "data" 描述符从 ".byte" 重命名为 "db"
"db",
};
struct platform platforms[2] = { //以默认描述符和自定义描述符两种方式建立一个数组
{
CS_ARCH_X86,
CS_MODE_32,
(unsigned char*)X86_CODE32,
sizeof(X86_CODE32) - 1,
"X86 32 (Intel syntax) - Skip data",
},
{
CS_ARCH_X86,
CS_MODE_32,
(unsigned char*)X86_CODE32,
sizeof(X86_CODE32) - 1,
"X86 32 (Intel syntax) - Skip data with custom mnemonic",
CS_OPT_INVALID,
CS_OPT_OFF,
CS_OPT_SKIPDATA_SETUP,
(size_t)& skipdata,
},
};
csh handle; //建立capstone句柄
uint64_t address = 0x1000; //设置起始地址
cs_insn* insn; //具体信息结构体
cs_err err; //错误枚举
int i;
size_t count; //成功反汇编行数
for (i = 0; i < sizeof(platforms) / sizeof(platforms[0]); i++) {
printf("****************\n");
printf("Platform: %s\n", platforms[i].comment);
err = cs_open(platforms[i].arch, platforms[i].mode, &handle); //错误检查
if (err) {
printf("Failed on cs_open() with error returned: %u\n", err);
abort();
}
if (platforms[i].opt_type)
cs_option(handle, platforms[i].opt_type, platforms[i].opt_value);
// 打开SKIPDATA 模式
cs_option(handle, CS_OPT_SKIPDATA, CS_OPT_ON);
cs_option(handle, platforms[i].opt_skipdata, platforms[i].skipdata);
count = cs_disasm(handle, platforms[i].code, platforms[i].size, address, 0, &insn);
if (count) {
size_t j;
print_string_hex(platforms[i].code, platforms[i].size);
printf("Disasm:\n");
for (j = 0; j < count; j++) { //输出汇编
printf("0x%" PRIx64 ":\t%s\t\t%s\n",
insn[j].address, insn[j].mnemonic, insn[j].op_str);
}
// 最后一行代码后打印偏移
printf("0x%" PRIx64 ":\n", insn[j - 1].address + insn[j - 1].size);
// 释放cs_disasm()申请的内存
cs_free(insn, count);
}
else {
printf("****************\n");
printf("Platform: %s\n", platforms[i].comment);
print_string_hex(platforms[i].code, platforms[i].size);
printf("ERROR: Failed to disasm given code!\n");
abort();
}
printf("\n");
cs_close(&handle);
}
}
int main()
{
test();
return 0;
}
运行结果如下,可以看出,默认的 .byte数据类型被改为db描述符
unsigned int CAPSTONE_API cs_version(int *major, int *minor);
用来输出capstone版本号 参数 major: API主版本 minor: API次版本 return: 返回主次版本的16进制,如4.0版本返回 0x0400
示例1:
#include <stdio.h>
#include <stdlib.h>
#include "platform.h"
#include "capstone.h"
static int test()
{
return cs_version(NULL, NULL);
}
int main()
{
int version = test();
printf("%X", version);
return 0;
}
示例2,强行修改版本:
#include <stdio.h>
#include <stdlib.h>
#include "platform.h"
#include "capstone.h"
static int test()
{
int ma[] = { 5 };
int mi[] = { 6 };
return cs_version(ma, mi);
}
int main()
{
int version = test();
printf("%X", version);
return 0;
}
bool CAPSTONE_API cs_support(int query);
用来检查capstone库是否支持参数输入的架构或处于某编译选项 通过查看源码得知,共有四种查询参数
bool CAPSTONE_API cs_support(int query)
{
if (query == CS_ARCH_ALL)
return all_arch == ((1 << CS_ARCH_ARM) | (1 << CS_ARCH_ARM64) |
(1 << CS_ARCH_MIPS) | (1 << CS_ARCH_X86) |
(1 << CS_ARCH_PPC) | (1 << CS_ARCH_SPARC) |
(1 << CS_ARCH_SYSZ) | (1 << CS_ARCH_XCORE) |
(1 << CS_ARCH_M68K) | (1 << CS_ARCH_TMS320C64X) |
(1 << CS_ARCH_M680X) | (1 << CS_ARCH_EVM));
if ((unsigned int)query < CS_ARCH_MAX)
return all_arch & (1 << query);
if (query == CS_SUPPORT_DIET) {
#ifdef CAPSTONE_DIET
return true;
#else
return false;
#endif
}
if (query == CS_SUPPORT_X86_REDUCE) {
#if defined(CAPSTONE_HAS_X86) && defined(CAPSTONE_X86_REDUCE)
return true;
#else
return false;
#endif
}
// unsupported query
return false;
}
cs_err CAPSTONE_API cs_open(cs_arch arch, cs_mode mode, csh *handle);
初始化cs句柄
参数 arch: 架构类型 (CS_ARCH_*) mode: 硬件模式. CS_MODE_*在cs_mode数据类型中可查 handle: 指向句柄, 返回时更新 return: 创建成功返回CS_ERR_OK,否则返回cs_err枚举中对应的错误信息
实现代码
cs_err CAPSTONE_API cs_open(cs_arch arch, cs_mode mode, csh *handle)
{
cs_err err;
struct cs_struct *ud;
if (!cs_mem_malloc || !cs_mem_calloc || !cs_mem_realloc || !cs_mem_free || !cs_vsnprintf)
// Error: 使用cs_open()前, 必须使用cs_option(CS_OPT_MEM)进行动态内存管理的初始化
return CS_ERR_MEMSETUP;
if (arch < CS_ARCH_MAX && cs_arch_init[arch]) {
// 验证架构是否使用,方式:架构在枚举中且可初始化
if (mode & cs_arch_disallowed_mode_mask[arch]) {
*handle = 0;
return CS_ERR_MODE;
}
ud = cs_mem_calloc(1, sizeof(*ud));
if (!ud) {
// 内存不足
return CS_ERR_MEM;
}
ud->errnum = CS_ERR_OK;
ud->arch = arch;
ud->mode = mode;
// 默认情况指令不打开detail模式
ud->detail = CS_OPT_OFF;
// 默认skipdata设置
ud->skipdata_setup.mnemonic = SKIPDATA_MNEM;
err = cs_arch_init[ud->arch](ud);
if (err) {
cs_mem_free(ud);
*handle = 0;
return err;
}
*handle = (uintptr_t)ud;
return CS_ERR_OK;
} else {
*handle = 0;
return CS_ERR_ARCH;
}
}
其中,cs_struct结构体包含更多细节设定,如下
struct cs_struct {
cs_arch arch;
cs_mode mode;
Printer_t printer; // 打印asm
void *printer_info; // 打印信息
Disasm_t disasm; // 反编译
void *getinsn_info; // 打印辅助信息
GetName_t reg_name;
GetName_t insn_name;
GetName_t group_name;
GetID_t insn_id;
PostPrinter_t post_printer;
cs_err errnum;
ARM_ITStatus ITBlock; // ARM特殊选项
cs_opt_value detail, imm_unsigned;
int syntax; //ARM, Mips & PPC等架构的基本asm语法打印
bool doing_mem; // 在InstPrinter代码中处理内存操作数
unsigned short *insn_cache; //为mapping.c建立缓存索引
GetRegisterName_t get_regname;
bool skipdata; // 如果反编译时要跳过数据,该项设置为True
uint8_t skipdata_size; //要跳过bytes的数量
cs_opt_skipdata skipdata_setup; // 自定义skipdata设置
const uint8_t *regsize_map; //映射register大小 (目前仅支持x86)
GetRegisterAccess_t reg_access;
struct insn_mnem *mnem_list; // 自定义指令助记符的链接list
};
示例(创建一个x86_64类型的cs句柄):
cs_open(CS_ARCH_X86, CS_MODE_64, &handle)
cs_err CAPSTONE_API cs_close(csh *handle);
释放句柄 参数 handle: 指向一个cs_open()打开的句柄 return: 释放成功返回CS_ERR_OK,否则返回cs_err枚举的错误信息
实现代码,可以看出释放句柄实质为将句柄值设置为0
cs_err CAPSTONE_API cs_close(csh *handle)
{
struct cs_struct *ud;
struct insn_mnem *next, *tmp;
if (*handle == 0)
// 句柄不可用
return CS_ERR_CSH;
ud = (struct cs_struct *)(*handle);
if (ud->printer_info)
cs_mem_free(ud->printer_info);
// 释放自定义助记符的链接list
tmp = ud->mnem_list;
while(tmp) {
next = tmp->next;
cs_mem_free(tmp);
tmp = next;
}
cs_mem_free(ud->insn_cache);
memset(ud, 0, sizeof(*ud));
cs_mem_free(ud);
// handle值设置为0,保证这个句柄在cs_close()释放后不可使用
*handle = 0;
return CS_ERR_OK;
}
示例:
cs_close(&handle);
cs_err CAPSTONE_API cs_option(csh handle, cs_opt_type type, size_t value);
反编译引擎的运行时选项
handle: cs_open()打开的句柄 type: 设置选项的类型 value: 与type对应的选项值 return: 设置成功返回CS_ERR_OK,否则返回cs_err枚举的错误信息
注意: 在CS_OPT_MEM的情况下,handle可以是任何值,因此cs_option(handle, CS_OPT_MEM, value)必须在cs_open()之前被调用
实现代码
cs_err CAPSTONE_API cs_option(csh ud, cs_opt_type type, size_t value)
{
struct cs_struct *handle;
cs_opt_mnem *opt;
// 支持在所有API前支持 (even cs_open())
if (type == CS_OPT_MEM) {
cs_opt_mem *mem = (cs_opt_mem *)value;
cs_mem_malloc = mem->malloc;
cs_mem_calloc = mem->calloc;
cs_mem_realloc = mem->realloc;
cs_mem_free = mem->free;
cs_vsnprintf = mem->vsnprintf;
return CS_ERR_OK;
}
handle = (struct cs_struct *)(uintptr_t)ud;
if (!handle)
return CS_ERR_CSH;
switch(type) {
default:
break;
case CS_OPT_UNSIGNED:
handle->imm_unsigned = (cs_opt_value)value;
return CS_ERR_OK;
case CS_OPT_DETAIL:
handle->detail = (cs_opt_value)value;
return CS_ERR_OK;
case CS_OPT_SKIPDATA:
handle->skipdata = (value == CS_OPT_ON);
if (handle->skipdata) {
if (handle->skipdata_size == 0) {
handle->skipdata_size = skipdata_size(handle);
}
}
return CS_ERR_OK;
case CS_OPT_SKIPDATA_SETUP:
if (value)
handle->skipdata_setup = *((cs_opt_skipdata *)value);
return CS_ERR_OK;
case CS_OPT_MNEMONIC:
opt = (cs_opt_mnem *)value;
if (opt->id) {
if (opt->mnemonic) {
struct insn_mnem *tmp;
// 添加新指令或替换现有指令
// 查看当前insn释放在list中
tmp = handle->mnem_list;
while(tmp) {
if (tmp->insn.id == opt->id) {
// f找到指令,替换助记符
(void)strncpy(tmp->insn.mnemonic, opt->mnemonic, sizeof(tmp->insn.mnemonic) - 1);
tmp->insn.mnemonic[sizeof(tmp->insn.mnemonic) - 1] = '\0';
break;
}
tmp = tmp->next;
}
// 2. 如果没有就添加这条指令
if (!tmp) {
tmp = cs_mem_malloc(sizeof(*tmp));
tmp->insn.id = opt->id;
(void)strncpy(tmp->insn.mnemonic, opt->mnemonic, sizeof(tmp->insn.mnemonic) - 1);
tmp->insn.mnemonic[sizeof(tmp->insn.mnemonic) - 1] = '\0';
// 新指令放在list最前面
tmp->next = handle->mnem_list;
handle->mnem_list = tmp;
}
return CS_ERR_OK;
} else {
struct insn_mnem *prev, *tmp;
tmp = handle->mnem_list;
prev = tmp;
while(tmp) {
if (tmp->insn.id == opt->id) {
// 删除指令
if (tmp == prev) {
handle->mnem_list = tmp->next;
} else {
prev->next = tmp->next;
}
cs_mem_free(tmp);
break;
}
prev = tmp;
tmp = tmp->next;
}
}
}
return CS_ERR_OK;
case CS_OPT_MODE:
// 验证所请求的模式是否有效
if (value & cs_arch_disallowed_mode_mask[handle->arch]) {
return CS_ERR_OPTION;
}
break;
}
return cs_arch_option[handle->arch](handle, type, value);
}
示例,更改反汇编后显示的语法:
#include <iostream>
#include <stdio.h>
#include "capstone.h"
#include "platform.h"
using namespace std;
#define CODE "\x55\x48\x8b\x05\xb8\x13\x00\x00"
int main(void)
{
csh handle;
cs_insn* insn;
size_t count;
if (cs_open(CS_ARCH_X86, CS_MODE_64, &handle)) {
printf("ERROR: Failed to initialize engine!\n");
return -1;
}
cs_option(handle, CS_OPT_SYNTAX, CS_OPT_SYNTAX_ATT); // 以AT&T语法显示
count = cs_disasm(handle, (unsigned char*)CODE, sizeof(CODE) - 1, 0x1000, 0, &insn);
if (count) {
size_t j;
for (j = 0; j < count; j++) {
printf("0x%""Ix"":\t%s\t\t%s\n", insn[j].address, insn[j].mnemonic, insn[j].op_str);
}
cs_free(insn, count);
}
else
printf("ERROR: Failed to disassemble given code!\n");
cs_close(&handle);
return 0;
}
输出
cs_err CAPSTONE_API cs_errno(csh handle);
API出错时返回错误消息 参数 handle: cs_open()打开的句柄 return: 无错误返回CS_ERR_OK,否则返回cs_err枚举的错误信息
实现很简单,判断到句柄不存在直接返回CS_ERR_CSH
示例:
#include <iostream>
#include <stdio.h>
#include "capstone.h"
#include "platform.h"
using namespace std;
#define CODE "\x55\x48\x8b\x05\xb8\x13\x00\x00"
int main(void)
{
csh handle = 0;
cs_insn* insn;
size_t count;
if (cs_open(CS_ARCH_X86, CS_MODE_64, &handle)) {
printf("ERROR: Failed to initialize engine!\n");
return -1;
}
cs_close(&handle);
std::cout << cs_errno(handle); //关闭句柄后检查将报错
return 0;
}
const char * CAPSTONE_API cs_strerror(cs_err code);
将上个API输出的错误码转换为详细错误信息
const char * CAPSTONE_API cs_strerror(cs_err code)
{
switch(code) {
default:
return "Unknown error code";
case CS_ERR_OK:
return "OK (CS_ERR_OK)";
case CS_ERR_MEM:
return "Out of memory (CS_ERR_MEM)";
case CS_ERR_ARCH:
return "Invalid/unsupported architecture(CS_ERR_ARCH)";
case CS_ERR_HANDLE:
return "Invalid handle (CS_ERR_HANDLE)";
case CS_ERR_CSH:
return "Invalid csh (CS_ERR_CSH)";
case CS_ERR_MODE:
return "Invalid mode (CS_ERR_MODE)";
case CS_ERR_OPTION:
return "Invalid option (CS_ERR_OPTION)";
case CS_ERR_DETAIL:
return "Details are unavailable (CS_ERR_DETAIL)";
case CS_ERR_MEMSETUP:
return "Dynamic memory management uninitialized (CS_ERR_MEMSETUP)";
case CS_ERR_VERSION:
return "Different API version between core & binding (CS_ERR_VERSION)";
case CS_ERR_DIET:
return "Information irrelevant in diet engine (CS_ERR_DIET)";
case CS_ERR_SKIPDATA:
return "Information irrelevant for 'data' instruction in SKIPDATA mode (CS_ERR_SKIPDATA)";
case CS_ERR_X86_ATT:
return "AT&T syntax is unavailable (CS_ERR_X86_ATT)";
case CS_ERR_X86_INTEL:
return "INTEL syntax is unavailable (CS_ERR_X86_INTEL)";
case CS_ERR_X86_MASM:
return "MASM syntax is unavailable (CS_ERR_X86_MASM)";
}
}
示例,结合cs_errno使用:
#include <iostream>
#include <stdio.h>
#include "capstone.h"
#include "platform.h"
using namespace std;
#define CODE "\x55\x48\x8b\x05\xb8\x13\x00\x00"
int main(void)
{
csh handle = 0;
cs_insn* insn;
size_t count;
if (cs_open(CS_ARCH_X86, CS_MODE_64, &handle)) {
printf("ERROR: Failed to initialize engine!\n");
return -1;
}
cs_close(&handle);
std::cout << cs_strerror(cs_errno(handle)); //直接输出报错信息
return 0;
}
size_t CAPSTONE_API cs_disasm(csh handle,
const uint8_t *code, size_t code_size,
uint64_t address,
size_t count,
cs_insn **insn);
给定缓冲区、大小、地址和编号,反编译机器码 API动态地分配内存来包含分解的指令,生成的指令将放在*insn中
注意: 必须释放分配的内存,以避免内存泄漏。对于需要动态分配稀缺内存的系统(如OS内核或固件),API cs_disasm_iter()可能是比cs_disasm()更好的选择。原因是,使用cs_disasm()时,基于有限的可用内存,必须预先计算要分解多少条指令。
handle: cs_open()返回的句柄 code: 包含要反汇编的机器码的缓冲区。 code_size:上面代码缓冲区的大小。 address:给定原始代码缓冲区中的第一条指令的地址。 insn: 由这个API填写的指令数组。注意: insn将由这个函数分配,应该用cs_free () API释放 count: 需要分解的指令数量,或输入0分解所有指令 return:成功反汇编指令的数量,如果该函数未能反汇编给定的代码,则为0,失败时,调用cs_errno()获取错误代码。
源码分析
size_t CAPSTONE_API cs_disasm(csh ud, const uint8_t *buffer, size_t size, uint64_t offset, size_t count, cs_insn **insn)
{
struct cs_struct *handle;
MCInst mci;
uint16_t insn_size;
size_t c = 0, i;
unsigned int f = 0; // 缓存中下一条指令的索引
cs_insn *insn_cache; // 缓存反汇编后的指令
void *total = NULL;
size_t total_size = 0; //所有insn的输出缓冲区的总大小
bool r;
void *tmp;
size_t skipdata_bytes;
uint64_t offset_org; // 保存缓冲区的所有原始信息
size_t size_org;
const uint8_t *buffer_org;
unsigned int cache_size = INSN_CACHE_SIZE;
size_t next_offset;
handle = (struct cs_struct *)(uintptr_t)ud;
if (!handle) {
// 修复方式:
// handle->errnum = CS_ERR_HANDLE;
return 0;
}
handle->errnum = CS_ERR_OK;
// 重设ARM架构的IT block
if (handle->arch == CS_ARCH_ARM)
handle->ITBlock.size = 0;
#ifdef CAPSTONE_USE_SYS_DYN_MEM
if (count > 0 && count <= INSN_CACHE_SIZE)
cache_size = (unsigned int) count;
#endif
// 保存SKIPDATA原始偏移量
buffer_org = buffer;
offset_org = offset;
size_org = size;
total_size = sizeof(cs_insn) * cache_size;
total = cs_mem_malloc(total_size);
if (total == NULL) {
// 内存不足
handle->errnum = CS_ERR_MEM;
return 0;
}
insn_cache = total;
while (size > 0) {
MCInst_Init(&mci);
mci.csh = handle;
mci.address = offset;
if (handle->detail) {
//给detail指针分配内存
insn_cache->detail = cs_mem_malloc(sizeof(cs_detail));
} else {
insn_cache->detail = NULL;
}
// 为non-detailed模式保存所有信息
mci.flat_insn = insn_cache;
mci.flat_insn->address = offset;
#ifdef CAPSTONE_DIET
//mnemonic & op_str0填充
mci.flat_insn->mnemonic[0] = '\0';
mci.flat_insn->op_str[0] = '\0';
#endif
r = handle->disasm(ud, buffer, size, &mci, &insn_size, offset, handle->getinsn_info);
if (r) {
SStream ss;
SStream_Init(&ss);
mci.flat_insn->size = insn_size;
//将内部指令操作码映射到公共insn ID
handle->insn_id(handle, insn_cache, mci.Opcode);
handle->printer(&mci, &ss, handle->printer_info);
fill_insn(handle, insn_cache, ss.buffer, &mci, handle->post_printer, buffer);
// 调整opcode (X86)
if (handle->arch == CS_ARCH_X86)
insn_cache->id += mci.popcode_adjust;
next_offset = insn_size;
} else {
// 遇到中断指令
// 为detail指针释放内存
if (handle->detail) {
cs_mem_free(insn_cache->detail);
}
if (!handle->skipdata || handle->skipdata_size > size)
break;
if (handle->skipdata_setup.callback) {
skipdata_bytes = handle->skipdata_setup.callback(buffer_org, size_org,
(size_t)(offset - offset_org), handle->skipdata_setup.user_data);
if (skipdata_bytes > size)
break;
if (!skipdata_bytes)
break;
} else
skipdata_bytes = handle->skipdata_size;
insn_cache->id = 0;
insn_cache->address = offset;
insn_cache->size = (uint16_t)skipdata_bytes;
memcpy(insn_cache->bytes, buffer, skipdata_bytes);
#ifdef CAPSTONE_DIET
insn_cache->mnemonic[0] = '\0';
insn_cache->op_str[0] = '\0';
#else
strncpy(insn_cache->mnemonic, handle->skipdata_setup.mnemonic,
sizeof(insn_cache->mnemonic) - 1);
skipdata_opstr(insn_cache->op_str, buffer, skipdata_bytes);
#endif
insn_cache->detail = NULL;
next_offset = skipdata_bytes;
}
// 一条新指令进入缓存
f++;
// 反汇编了一条指令
c++;
if (count > 0 && c == count)
break;
if (f == cache_size) {
cache_size = cache_size * 8 / 5;
total_size += (sizeof(cs_insn) * cache_size);
tmp = cs_mem_realloc(total, total_size);
if (tmp == NULL) { //内存不足
if (handle->detail) {
insn_cache = (cs_insn *)total;
for (i = 0; i < c; i++, insn_cache++)
cs_mem_free(insn_cache->detail);
}
cs_mem_free(total);
*insn = NULL;
handle->errnum = CS_ERR_MEM;
return 0;
}
total = tmp;
//在最后一条指令之后继续填充缓存
insn_cache = (cs_insn *)((char *)total + sizeof(cs_insn) * c);
// 将f重置为0,从一开始就填入缓存
f = 0;
} else
insn_cache++;
buffer += next_offset;
size -= next_offset;
offset += next_offset;
}
if (!c) {
//未反汇编任何指令
cs_mem_free(total);
total = NULL;
} else if (f != cache_size) {
// 没有完全使用最后一个缓存,缩小大小
tmp = cs_mem_realloc(total, total_size - (cache_size - f) * sizeof(*insn_cache));
if (tmp == NULL) { // 内存不足
// 释放所有detail指针
if (handle->detail) {
insn_cache = (cs_insn *)total;
for (i = 0; i < c; i++, insn_cache++)
cs_mem_free(insn_cache->detail);
}
cs_mem_free(total);
*insn = NULL;
handle->errnum = CS_ERR_MEM;
return 0;
}
total = tmp;
}
*insn = total;
return c;
}
示例,x86_64:
#include <iostream>
#include <stdio.h>
#include "capstone.h"
#include "platform.h"
using namespace std;
#define CODE "\x55\x48\x8b\x05\xb8\x13\x00\x00\xe9\xea\xbe\xad\xde\xff\x25\x23\x01\x00\x00\xe8\xdf\xbe\xad\xde\x74\xff"
int main(void)
{
csh handle = 0;
cs_insn* insn;
size_t count;
if (cs_open(CS_ARCH_X86, CS_MODE_64, &handle)) {
printf("ERROR: Failed to initialize engine!\n");
return -1;
}
count = cs_disasm(handle, (unsigned char*)CODE, sizeof(CODE) - 1, 0x1000, 0, &insn); //所有指令,基址0x1000,放入insn
if (count) {
size_t j;
for (j = 0; j < count; j++) {
printf("0x%""Ix"":\t%s\t\t%s\n", insn[j].address, insn[j].mnemonic, insn[j].op_str);
}
cs_free(insn, count);
}
else
printf("ERROR: Failed to disassemble given code!\n");
cs_close(&handle);
return 0;
}
输出
void CAPSTONE_API cs_free(cs_insn *insn, size_t count);
释放被cs_malloc() 或 cs_disasm()分配的内存(insn参数) 参数 insn: 由cs_disasm()或cs_malloc()中的@insn参数返回的指针 count: 赋值由cs_disasm()返回的cs_insn结构的数量,或赋值为1表示由cs_malloc()分配给空闲内存的数量
代码实现 直接调用cs_mem_free,也就是默认的free
示例(释放cs_disasm申请的内存),代码片段:
count = cs_disasm(handle, (unsigned char*)CODE, sizeof(CODE) - 1, 0x1000, 0, &insn); //计数由cs_disasm申请的内存
if (count) {
size_t j;
for (j = 0; j < count; j++) {
printf("0x%""Ix"":\t%s\t\t%s\n", insn[j].address, insn[j].mnemonic, insn[j].op_str);
}
cs_free(insn, count); //循环依次释放每条insn的内存
}
cs_insn * CAPSTONE_API cs_malloc(csh handle);
被用于在API cs_disasm_iter()中为一条指令分配内存
参数 handle: cs_open()返回的句柄
当这条指令所占的内存不再使用时,使用cs_free(insn, 1)释放,示例在下面cs_disasm_iter处
bool CAPSTONE_API cs_disasm_iter(csh handle,
const uint8_t **code, size_t *size,
uint64_t *address, cs_insn *insn);
给定buff、大小、地址和要解码的指令数,更快速的反汇编机器码, 这个API将生成的指令放入insn中的给定的缓存中。
注意1: 此API将更新code、size和address以指向输入缓冲区中的下一条指令。所以,虽然每次反汇编一条指令可以使用cs_disasm(count=1)来实现,但一些基准测试显示,在循环中使用cs_disasm_iter()可以方便地快速迭代所有指令,在随机输入时可以快30%。
注意2:可以使用cs_malloc()创建insn中的缓存。
注意3:对于动态分配内存可能产生内存不足的系统(比如OS内核或固件),建议使用cs_disasm()这个API, 因为cs_disasm()是根据要分解的指令的数量来分配内存。
参数 handle: cs_open()返回的句柄 code: 要反汇编的机器码所在的缓冲区 size: 机器码缓冲区的大小 address: 所给机器码缓冲区中第一个insn的地址 insn: 指向这个API要填充的指令的指针。 return:如果这个API成功反汇编了一条指令返回true,否则将返回false。
失败时,调用cs_errno()获取错误代码。
代码实现,在cs_disasm基础上使用动态内存分配
bool CAPSTONE_API cs_disasm_iter(csh ud, const uint8_t **code, size_t *size,
uint64_t *address, cs_insn *insn)
{
struct cs_struct *handle;
uint16_t insn_size;
MCInst mci;
bool r;
handle = (struct cs_struct *)(uintptr_t)ud;
if (!handle) {
return false;
}
handle->errnum = CS_ERR_OK;
MCInst_Init(&mci);
mci.csh = handle;
mci.address = *address;
// 为无detail模式保存相关信息
mci.flat_insn = insn;
mci.flat_insn->address = *address;
#ifdef CAPSTONE_DIET
mci.flat_insn->mnemonic[0] = '\0';
mci.flat_insn->op_str[0] = '\0';
#endif
r = handle->disasm(ud, *code, *size, &mci, &insn_size, *address, handle->getinsn_info);
if (r) {
SStream ss;
SStream_Init(&ss);
mci.flat_insn->size = insn_size;
// 将内部指令操作码映射到公共insn ID
handle->insn_id(handle, insn, mci.Opcode);
handle->printer(&mci, &ss, handle->printer_info);
fill_insn(handle, insn, ss.buffer, &mci, handle->post_printer, *code);
// 调整伪操作码(X86)
if (handle->arch == CS_ARCH_X86)
insn->id += mci.popcode_adjust;
*code += insn_size;
*size -= insn_size;
*address += insn_size;
} else { // 遇到中断指令
size_t skipdata_bytes;
// 如果没有跳过数据的请求,或者剩余数据太小,则退出
if (!handle->skipdata || handle->skipdata_size > *size)
return false;
if (handle->skipdata_setup.callback) {
skipdata_bytes = handle->skipdata_setup.callback(*code, *size,
0, handle->skipdata_setup.user_data);
if (skipdata_bytes > *size)
// 剩余数据太小
return false;
if (!skipdata_bytes)
return false;
} else
skipdata_bytes = handle->skipdata_size;
// 基于架构和模式跳过一些数据
insn->id = 0; // 此“数据”指令的ID无效
insn->address = *address;
insn->size = (uint16_t)skipdata_bytes;
#ifdef CAPSTONE_DIET
insn->mnemonic[0] = '\0';
insn->op_str[0] = '\0';
#else
memcpy(insn->bytes, *code, skipdata_bytes);
strncpy(insn->mnemonic, handle->skipdata_setup.mnemonic,
sizeof(insn->mnemonic) - 1);
skipdata_opstr(insn->op_str, *code, skipdata_bytes);
#endif
*code += skipdata_bytes;
*size -= skipdata_bytes;
*address += skipdata_bytes;
}
return true;
}
示例:
#include <iostream>
#include <stdio.h>
#include "capstone.h"
#include "platform.h"
using namespace std;
struct platform {
cs_arch arch;
cs_mode mode;
unsigned char* code;
size_t size;
const char* comment;
cs_opt_type opt_type;
cs_opt_value opt_value;
};
static void print_string_hex(unsigned char* str, size_t len)
{
unsigned char* c;
printf("Code: ");
for (c = str; c < str + len; c++) {
printf("0x%02x ", *c & 0xff);
}
printf("\n");
}
static void test()
{
#define X86_CODE16 "\x8d\x4c\x32\x08\x01\xd8\x81\xc6\x34\x12\x00\x00"
#define X86_CODE32 "\x8d\x4c\x32\x08\x01\xd8\x81\xc6\x34\x12\x00\x00"
#define X86_CODE64 "\x55\x48\x8b\x05\xb8\x13\x00\x00"
struct platform platforms[4] = { //架构及模式
{
CS_ARCH_X86,
CS_MODE_16,
(unsigned char*)X86_CODE16,
sizeof(X86_CODE32) - 1,
"X86 16bit (Intel syntax)"
},
{
CS_ARCH_X86,
CS_MODE_32,
(unsigned char*)X86_CODE32,
sizeof(X86_CODE32) - 1,
"X86 32bit (ATT syntax)",
CS_OPT_SYNTAX,
CS_OPT_SYNTAX_ATT,
},
{
CS_ARCH_X86,
CS_MODE_32,
(unsigned char*)X86_CODE32,
sizeof(X86_CODE32) - 1,
"X86 32 (Intel syntax)"
},
{
CS_ARCH_X86,
CS_MODE_64,
(unsigned char*)X86_CODE64,
sizeof(X86_CODE64) - 1,
"X86 64 (Intel syntax)"
},
csh handle;
uint64_t address;
cs_insn* insn;
cs_detail* detail;
int i;
cs_err err;
const uint8_t* code;
size_t size;
for (i = 0; i < sizeof(platforms) / sizeof(platforms[0]); i++) {
printf("****************\n");
printf("Platform: %s\n", platforms[i].comment);
err = cs_open(platforms[i].arch, platforms[i].mode, &handle);
if (err) {
printf("Failed on cs_open() with error returned: %u\n", err);
abort();
}
if (platforms[i].opt_type)
cs_option(handle, platforms[i].opt_type, platforms[i].opt_value);
cs_option(handle, CS_OPT_DETAIL, CS_OPT_ON);
// 为cs_disasm_iter()分配内存
insn = cs_malloc(handle);
print_string_hex(platforms[i].code, platforms[i].size); //原机器码
printf("Disasm:\n");
address = 0x1000;
code = platforms[i].code;
size = platforms[i].size;
while (cs_disasm_iter(handle, &code, &size, &address, insn)) { //cs_disasm_iter反汇编
int n;
printf("0x%" PRIx64 ":\t%s\t\t%s // insn-ID: %u, insn-mnem: %s\n",
insn->address, insn->mnemonic, insn->op_str,
insn->id, cs_insn_name(handle, insn->id));
// 打印此指令使用的隐式寄存器
detail = insn->detail;
if (detail->regs_read_count > 0) {
printf("\tImplicit registers read: ");
for (n = 0; n < detail->regs_read_count; n++) {
printf("%s ", cs_reg_name(handle, detail->regs_read[n]));
}
printf("\n");
}
// 打印此指令修改的隐式寄存器
if (detail->regs_write_count > 0) {
printf("\tImplicit registers modified: ");
for (n = 0; n < detail->regs_write_count; n++) {
printf("%s ", cs_reg_name(handle, detail->regs_write[n]));
}
printf("\n");
}
// 打印此指令所属指令集
if (detail->groups_count > 0) {
printf("\tThis instruction belongs to groups: ");
for (n = 0; n < detail->groups_count; n++) {
printf("%s ", cs_group_name(handle, detail->groups[n]));
}
printf("\n");
}
}
printf("\n");
// 释放cs_malloc()分配的内存
cs_free(insn, 1);
cs_close(&handle);
}
}
int main()
{
test();
return 0;
}
const char * CAPSTONE_API cs_reg_name(csh handle, unsigned int reg_id);
获取寄存器的名字(string类型) 寄存器id可在相关架构的头文件(建立项目时复制到项目文件夹的那些头文件)内找到
注意: 当处于diet模式时此API不可用,因为引擎不会存储寄存器名
参数 handle: cs_open()返回的句柄 reg_id: 寄存器id return: 寄存器的字符名, 如果reg_id不可用返回NULL
示例(打印RAX):
#include <iostream>
#include <stdio.h>
#include "capstone.h"
#include "platform.h"
using namespace std;
int main(void)
{
csh handle = 0;
cs_insn* insn;
size_t count;
if (cs_open(CS_ARCH_X86, CS_MODE_64, &handle)) {
printf("ERROR: Failed to initialize engine!\n");
return -1;
}
printf("%s", cs_reg_name(handle, X86_REG_RAX));
cs_close(&handle);
return 0;
}
const char * CAPSTONE_API cs_insn_name(csh handle, unsigned int insn_id);
获取指令的名字(string类型) 指令id可在相关架构的头文件(建立项目时复制到项目文件夹的那些头文件)内找到
注意: 当处于diet模式时此API不可用,因为引擎不会存储寄存器名
参数 handle: cs_open()返回的句柄 insn_id: 指令id return: 指令的字符名, 如果insn_id不可用返回NULL
示例:
#include <iostream>
#include <stdio.h>
#include "capstone.h"
#include "platform.h"
using namespace std;
struct platform {
cs_arch arch;
cs_mode mode;
unsigned char* code;
size_t size;
const char* comment;
cs_opt_type opt_type;
cs_opt_value opt_value;
};
static void print_string_hex(unsigned char* str, size_t len)
{
unsigned char* c;
printf("Code: ");
for (c = str; c < str + len; c++) {
printf("0x%02x ", *c & 0xff);
}
printf("\n");
}
static void test()
{
#define X86_CODE64 "\x55\x48\x8b\x05\xb8\x13\x00\x00\xe9\xea\xbe\xad\xde\xff\x25\x23\x01\x00\x00\xe8\xdf\xbe\xad\xde\x74\xff"
struct platform platforms[] = {
{
CS_ARCH_X86,
CS_MODE_64,
(unsigned char*)X86_CODE64,
sizeof(X86_CODE64) - 1,
"X86 64 (Intel syntax)"
},
};
csh handle;
uint64_t address;
cs_insn* insn;
cs_detail* detail;
int i;
cs_err err;
const uint8_t* code;
size_t size;
for (i = 0; i < sizeof(platforms) / sizeof(platforms[0]); i++) {
printf("****************\n");
printf("Platform: %s\n", platforms[i].comment);
err = cs_open(platforms[i].arch, platforms[i].mode, &handle);
if (err) {
printf("Failed on cs_open() with error returned: %u\n", err);
abort();
}
if (platforms[i].opt_type)
cs_option(handle, platforms[i].opt_type, platforms[i].opt_value);
cs_option(handle, CS_OPT_DETAIL, CS_OPT_ON);
insn = cs_malloc(handle);
print_string_hex(platforms[i].code, platforms[i].size);
printf("Disasm:\n");
address = 0x1000;
code = platforms[i].code;
size = platforms[i].size;
while (cs_disasm_iter(handle, &code, &size, &address, insn)) {
int n;
printf("0x%" PRIx64 ":\t%s\t\t%s",
insn->address, insn->mnemonic, insn->op_str);
printf(" instruction: %s", cs_insn_name(handle, insn->id)); //输出该行的操作指令
cout << endl;
printf("\n");
cs_free(insn, 1);
cs_close(&handle);
}
}
int main()
{
test();
return 0;
}
const char * CAPSTONE_API cs_group_name(csh handle, unsigned int group_id);
输出指令类型名字 指令id可在相关架构的头文件(建立项目时复制到项目文件夹的那些头文件)内找到
注意: 当处于diet模式时此API不可用,因为引擎不会存储寄存器名
参数 handle: cs_open()返回的句柄 insn_id: 指令类型id return: 指令类型的字符名, 如果insn_id不可用返回NULL
实现代码及示例都与上面类似,略。。
bool CAPSTONE_API cs_insn_group(csh handle, const cs_insn *insn, unsigned int group_id);
检查反汇编后的指令是否属于某个特定指令类型。
注意:只有当detail选项为ON时这个API可用 (默认OFF). 在“diet”模式下,此API没有用,因为引擎不更新insn->groups数组。
handle: cs_open()返回的句柄 insn: 从cs_disasm()或cs_disasm_iter()接收的反汇编指令结构 group_id: 要检查此指令是否属于的指令类型。 return: 如果该指令确实属于给定的指令类型,则为true,否则为false。
示例(判断是否属于跳转指令):
#include <iostream>
#include <stdio.h>
#include "capstone.h"
#include "platform.h"
using namespace std;
struct platform {
cs_arch arch;
cs_mode mode;
unsigned char* code;
size_t size;
const char* comment;
cs_opt_type opt_type;
cs_opt_value opt_value;
};
static void print_string_hex(unsigned char* str, size_t len)
{
unsigned char* c;
printf("Code: ");
for (c = str; c < str + len; c++) {
printf("0x%02x ", *c & 0xff);
}
printf("\n");
}
static void test()
{
#define X86_CODE64 "\x55\x48\x8b\x05\xb8\x13\x00\x00\xe9\xea\xbe\xad\xde\xff\x25\x23\x01\x00\x00\xe8\xdf\xbe\xad\xde\x74\xff"
struct platform platforms[] = {
{
CS_ARCH_X86,
CS_MODE_64,
(unsigned char*)X86_CODE64,
sizeof(X86_CODE64) - 1,
"X86 64 (Intel syntax)"
},
};
csh handle;
uint64_t address;
cs_insn* insn;
cs_detail* detail;
int i;
cs_err err;
const uint8_t* code;
size_t size;
for (i = 0; i < sizeof(platforms) / sizeof(platforms[0]); i++) {
printf("****************\n");
printf("Platform: %s\n", platforms[i].comment);
err = cs_open(platforms[i].arch, platforms[i].mode, &handle);
if (err) {
printf("Failed on cs_open() with error returned: %u\n", err);
abort();
}
if (platforms[i].opt_type)
cs_option(handle, platforms[i].opt_type, platforms[i].opt_value);
cs_option(handle, CS_OPT_DETAIL, CS_OPT_ON);
insn = cs_malloc(handle);
print_string_hex(platforms[i].code, platforms[i].size);
printf("Disasm:\n");
address = 0x1000;
code = platforms[i].code;
size = platforms[i].size;
while (cs_disasm_iter(handle, &code, &size, &address, insn)) {
int n;
printf("0x%" PRIx64 ":\t%s\t\t%s ",
insn->address, insn->mnemonic, insn->op_str);
cout << "is JUMP: " <<cs_insn_group(handle, insn, CS_GRP_JUMP) << endl; //判断是否为跳转指令
cout << endl;
printf("\n");
cs_free(insn, 1);
cs_close(&handle);
}
}
int main()
{
test();
return 0;
}
bool CAPSTONE_API cs_reg_read(csh handle, const cs_insn *insn, unsigned int reg_id);
检查反汇编指令是否隐式使用特定寄存器。
注意:此API仅在启用detail选项时有效(默认为关闭) 在“diet”模式下,此API没有用,因为引擎不更新insn->regs_read数组。
insn: 从cs_disasm()或cs_disasm_iter()接收的反汇编指令结构 reg_id: 标注想要检查的这个指令是否使用了它。 return: 如果该指令确实隐式使用了给定寄存器,则为true,否则为false。
示例同API cs_disasm_iter
bool CAPSTONE_API cs_reg_write(csh handle, const cs_insn *insn, unsigned int reg_id);
检查反汇编指令是否隐式修改了特定寄存器。
注意:此API仅在启用detail选项时有效(默认为关闭) 在“diet”模式下,此API没有用,因为引擎不更新insn->regs_read数组。
insn: 从cs_disasm()或cs_disasm_iter()接收的反汇编指令结构 reg_id: 标注想要检查的这个指令是否修改了它。 return: 如果该指令确实隐式修改了给定寄存器,则为true,否则为false。
示例同API cs_disasm_iter
int CAPSTONE_API cs_op_count(csh handle, const cs_insn *insn, unsigned int op_type);
计算给定类型的操作数的数量。 注意:只有当detail选项为ON时这个API可用 (默认OFF).
handle: cs_open()返回的句柄 insn: 从cs_disasm()或cs_disasm_iter()接收的反汇编指令结构 op_type: 要找到的操作数类型。 return: 指令insn中给定类型op_type的操作数的数量,返回-1表示查找失败。
代码实现
int CAPSTONE_API cs_op_count(csh ud, const cs_insn *insn, unsigned int op_type)
{
struct cs_struct *handle;
unsigned int count = 0, i;
if (!ud)
return -1;
handle = (struct cs_struct *)(uintptr_t)ud;
if (!handle->detail) {
handle->errnum = CS_ERR_DETAIL;
return -1;
}
if (!insn->id) {
handle->errnum = CS_ERR_SKIPDATA;
return -1;
}
if (!insn->detail) {
handle->errnum = CS_ERR_DETAIL;
return -1;
}
handle->errnum = CS_ERR_OK;
switch (handle->arch) {
default:
handle->errnum = CS_ERR_HANDLE;
return -1;
case CS_ARCH_ARM:
for (i = 0; i < insn->detail->arm.op_count; i++)
if (insn->detail->arm.operands[i].type == (arm_op_type)op_type)
count++;
break;
case CS_ARCH_ARM64:
for (i = 0; i < insn->detail->arm64.op_count; i++)
if (insn->detail->arm64.operands[i].type == (arm64_op_type)op_type)
count++;
break;
case CS_ARCH_X86:
for (i = 0; i < insn->detail->x86.op_count; i++)
if (insn->detail->x86.operands[i].type == (x86_op_type)op_type)
count++;
break;
case CS_ARCH_MIPS:
for (i = 0; i < insn->detail->mips.op_count; i++)
if (insn->detail->mips.operands[i].type == (mips_op_type)op_type)
count++;
break;
case CS_ARCH_PPC:
for (i = 0; i < insn->detail->ppc.op_count; i++)
if (insn->detail->ppc.operands[i].type == (ppc_op_type)op_type)
count++;
break;
case CS_ARCH_SPARC:
for (i = 0; i < insn->detail->sparc.op_count; i++)
if (insn->detail->sparc.operands[i].type == (sparc_op_type)op_type)
count++;
break;
case CS_ARCH_SYSZ:
for (i = 0; i < insn->detail->sysz.op_count; i++)
if (insn->detail->sysz.operands[i].type == (sysz_op_type)op_type)
count++;
break;
case CS_ARCH_XCORE:
for (i = 0; i < insn->detail->xcore.op_count; i++)
if (insn->detail->xcore.operands[i].type == (xcore_op_type)op_type)
count++;
break;
case CS_ARCH_M68K:
for (i = 0; i < insn->detail->m68k.op_count; i++)
if (insn->detail->m68k.operands[i].type == (m68k_op_type)op_type)
count++;
break;
case CS_ARCH_TMS320C64X:
for (i = 0; i < insn->detail->tms320c64x.op_count; i++)
if (insn->detail->tms320c64x.operands[i].type == (tms320c64x_op_type)op_type)
count++;
break;
case CS_ARCH_M680X:
for (i = 0; i < insn->detail->m680x.op_count; i++)
if (insn->detail->m680x.operands[i].type == (m680x_op_type)op_type)
count++;
break;
case CS_ARCH_EVM:
#if 0
for (i = 0; i < insn->detail->evm.op_count; i++)
if (insn->detail->evm.operands[i].type == (evm_op_type)op_type)
count++;
#endif
break;
}
return count;
}
拿x86指令操作码类型举例
typedef enum x86_op_type {
X86_OP_INVALID = 0, ///< = CS_OP_INVALID (未初始化).
X86_OP_REG, ///< = CS_OP_REG (寄存操作码).
X86_OP_IMM, ///< = CS_OP_IMM (立即操作码).
X86_OP_MEM, ///< = CS_OP_MEM (内存操作码).
} x86_op_type;
示例(判断寄存操作码):
#include <iostream>
#include <stdio.h>
#include "capstone.h"
#include "platform.h"
using namespace std;
struct platform {
cs_arch arch;
cs_mode mode;
unsigned char* code;
size_t size;
const char* comment;
cs_opt_type opt_type;
cs_opt_value opt_value;
};
static void print_string_hex(unsigned char* str, size_t len)
{
unsigned char* c;
printf("Code: ");
for (c = str; c < str + len; c++) {
printf("0x%02x ", *c & 0xff);
}
printf("\n");
}
static void test()
{
#define X86_CODE64 "\x55\x48\x8b\x05\xb8\x13\x00\x00\xe9\xea\xbe\xad\xde\xff\x25\x23\x01\x00\x00\xe8\xdf\xbe\xad\xde\x74\xff"
struct platform platforms[] = {
{
CS_ARCH_X86,
CS_MODE_64,
(unsigned char*)X86_CODE64,
sizeof(X86_CODE64) - 1,
"X86 64 (Intel syntax)"
},
};
csh handle;
uint64_t address;
cs_insn* insn;
cs_detail* detail;
int i;
cs_err err;
const uint8_t* code;
size_t size;
for (i = 0; i < sizeof(platforms) / sizeof(platforms[0]); i++) {
printf("****************\n");
printf("Platform: %s\n", platforms[i].comment);
err = cs_open(platforms[i].arch, platforms[i].mode, &handle);
if (err) {
printf("Failed on cs_open() with error returned: %u\n", err);
abort();
}
if (platforms[i].opt_type)
cs_option(handle, platforms[i].opt_type, platforms[i].opt_value);
cs_option(handle, CS_OPT_DETAIL, CS_OPT_ON);
insn = cs_malloc(handle);
print_string_hex(platforms[i].code, platforms[i].size);
printf("Disasm:\n");
address = 0x1000;
code = platforms[i].code;
size = platforms[i].size;
while (cs_disasm_iter(handle, &code, &size, &address, insn)) {
int n;
printf("0x%" PRIx64 ":\t%s\t\t%s ",
insn->address, insn->mnemonic, insn->op_str);
cout << "is REG: " << cs_op_count(handle, insn, X86_OP_REG) << endl; //判断是否为寄存操作码
cout << endl;
printf("\n");
cs_free(insn, 1);
cs_close(&handle);
}
}
int main()
{
test();
return 0;
}
int CAPSTONE_API cs_op_index(csh handle, const cs_insn *insn, unsigned int op_type, unsigned int position);
检索给定类型的操作数在<arch>.operands[]
数组中的位置, 使用返回的位置访问操作数。
注意:只有当detail选项为ON时这个API可用 (默认OFF).
handle: cs_open()返回的句柄
insn: 从cs_disasm()或cs_disasm_iter()接收的反汇编指令结构
op_type: 要找到的操作数类型。
position: 要查找的操作数的位置。范围一定在[1, cs_op_count(handle, insn, op_type)]
内
return: 指令insn的<arch>.operands[]
数组中给定类型op_type的操作数的索引,失败时返回-1。
代码实现
int CAPSTONE_API cs_op_index(csh ud, const cs_insn *insn, unsigned int op_type,
unsigned int post)
{
struct cs_struct *handle;
unsigned int count = 0, i;
if (!ud)
return -1;
handle = (struct cs_struct *)(uintptr_t)ud;
if (!handle->detail) {
handle->errnum = CS_ERR_DETAIL;
return -1;
}
if (!insn->id) {
handle->errnum = CS_ERR_SKIPDATA;
return -1;
}
if (!insn->detail) {
handle->errnum = CS_ERR_DETAIL;
return -1;
}
handle->errnum = CS_ERR_OK;
switch (handle->arch) {
default:
handle->errnum = CS_ERR_HANDLE;
return -1;
case CS_ARCH_ARM:
for (i = 0; i < insn->detail->arm.op_count; i++) {
if (insn->detail->arm.operands[i].type == (arm_op_type)op_type)
count++;
if (count == post)
return i;
}
break;
case CS_ARCH_ARM64:
for (i = 0; i < insn->detail->arm64.op_count; i++) {
if (insn->detail->arm64.operands[i].type == (arm64_op_type)op_type)
count++;
if (count == post)
return i;
}
break;
case CS_ARCH_X86:
for (i = 0; i < insn->detail->x86.op_count; i++) {
if (insn->detail->x86.operands[i].type == (x86_op_type)op_type)
count++;
if (count == post)
return i;
}
break;
case CS_ARCH_MIPS:
for (i = 0; i < insn->detail->mips.op_count; i++) {
if (insn->detail->mips.operands[i].type == (mips_op_type)op_type)
count++;
if (count == post)
return i;
}
break;
case CS_ARCH_PPC:
for (i = 0; i < insn->detail->ppc.op_count; i++) {
if (insn->detail->ppc.operands[i].type == (ppc_op_type)op_type)
count++;
if (count == post)
return i;
}
break;
case CS_ARCH_SPARC:
for (i = 0; i < insn->detail->sparc.op_count; i++) {
if (insn->detail->sparc.operands[i].type == (sparc_op_type)op_type)
count++;
if (count == post)
return i;
}
break;
case CS_ARCH_SYSZ:
for (i = 0; i < insn->detail->sysz.op_count; i++) {
if (insn->detail->sysz.operands[i].type == (sysz_op_type)op_type)
count++;
if (count == post)
return i;
}
break;
case CS_ARCH_XCORE:
for (i = 0; i < insn->detail->xcore.op_count; i++) {
if (insn->detail->xcore.operands[i].type == (xcore_op_type)op_type)
count++;
if (count == post)
return i;
}
break;
case CS_ARCH_M68K:
for (i = 0; i < insn->detail->m68k.op_count; i++) {
if (insn->detail->m68k.operands[i].type == (m68k_op_type)op_type)
count++;
if (count == post)
return i;
}
break;
case CS_ARCH_TMS320C64X:
for (i = 0; i < insn->detail->tms320c64x.op_count; i++) {
if (insn->detail->tms320c64x.operands[i].type == (tms320c64x_op_type)op_type)
count++;
if (count == post)
return i;
}
break;
case CS_ARCH_M680X:
for (i = 0; i < insn->detail->m680x.op_count; i++) {
if (insn->detail->m680x.operands[i].type == (m680x_op_type)op_type)
count++;
if (count == post)
return i;
}
break;
}
return -1;
}
示例
#include <iostream>
#include <stdio.h>
#include "capstone.h"
#include "platform.h"
using namespace std;
struct platform {
cs_arch arch;
cs_mode mode;
unsigned char* code;
size_t size;
const char* comment;
cs_opt_type opt_type;
cs_opt_value opt_value;
};
static void print_string_hex(unsigned char* str, size_t len)
{
unsigned char* c;
printf("Code: ");
for (c = str; c < str + len; c++) {
printf("0x%02x ", *c & 0xff);
}
printf("\n");
}
static void test()
{
#define X86_CODE64 "\x55\x48\x8b\x05\xb8\x13\x00\x00\xe9\xea\xbe\xad\xde\xff\x25\x23\x01\x00\x00\xe8\xdf\xbe\xad\xde\x74\xff"
struct platform platforms[] = {
{
CS_ARCH_X86,
CS_MODE_64,
(unsigned char*)X86_CODE64,
sizeof(X86_CODE64) - 1,
"X86 64 (Intel syntax)"
},
};
csh handle;
uint64_t address;
cs_insn* insn;
cs_detail* detail;
int i;
cs_err err;
const uint8_t* code;
size_t size;
cs_x86* x86;
int count;
for (i = 0; i < sizeof(platforms) / sizeof(platforms[0]); i++) {
printf("****************\n");
printf("Platform: %s\n", platforms[i].comment);
err = cs_open(platforms[i].arch, platforms[i].mode, &handle);
if (err) {
printf("Failed on cs_open() with error returned: %u\n", err);
abort();
}
if (platforms[i].opt_type)
cs_option(handle, platforms[i].opt_type, platforms[i].opt_value);
cs_option(handle, CS_OPT_DETAIL, CS_OPT_ON);
insn = cs_malloc(handle);
x86 = &(insn->detail->x86);
print_string_hex(platforms[i].code, platforms[i].size);
printf("Disasm:\n");
address = 0x1000;
code = platforms[i].code;
size = platforms[i].size;
while (cs_disasm_iter(handle, &code, &size, &address, insn)) {
int n;
printf("0x%" PRIx64 ":\t%s\t\t%s ",
insn->address, insn->mnemonic, insn->op_str);
cout << endl;
count = cs_op_count(handle, insn, X86_OP_IMM); //查找立即数
if (count) {
printf("\timm_count: %u\n", count);
for (i = 1; i < count + 1; i++) {
int index = cs_op_index(handle, insn, X86_OP_IMM, i);
printf("\timms[%u]: 0x%" PRIx64 "\n", i, x86->operands[index].imm);
if (x86->encoding.imm_offset != 0) {
printf("\timm_offset: 0x%x\n", x86->encoding.imm_offset);
}
if (x86->encoding.imm_size != 0) {
printf("\timm_size: 0x%x\n", x86->encoding.imm_size);
}
}
}
}
printf("\n");
cs_free(insn, 1);
cs_close(&handle);
}
}
int main()
{
test();
return 0;
}
cs_err CAPSTONE_API cs_regs_access(csh handle, const cs_insn *insn,
cs_regs regs_read, uint8_t *regs_read_count,
cs_regs regs_write, uint8_t *regs_write_count);
检索由一条指令显式或隐式访问的所有寄存器。
注意: 在“diet”模式下,此API不可用,因为引擎不存储寄存器。
handle: cs_open()返回的句柄 insn: 从cs_disasm()或cs_disasm_iter()返回的反汇编指令结构 regs_read:返回时,这个数组包含所有按指令读取的寄存器。 regs_read_count:保存在regs_read数组中的寄存器数。 regs_write:返回时,这个数组包含所有由指令修改的寄存器。 regs_write_count:保存在regs_write数组中的寄存器数。 成功时返回CS_ERR_OK,失败时返回其他值(详细错误请参阅cs_err enum)。
代码实现
cs_err CAPSTONE_API cs_regs_access(csh ud, const cs_insn *insn,
cs_regs regs_read, uint8_t *regs_read_count,
cs_regs regs_write, uint8_t *regs_write_count)
{
struct cs_struct *handle;
if (!ud)
return -1;
handle = (struct cs_struct *)(uintptr_t)ud;
#ifdef CAPSTONE_DIET
// This API does not work in DIET mode
handle->errnum = CS_ERR_DIET;
return CS_ERR_DIET;
#else
if (!handle->detail) {
handle->errnum = CS_ERR_DETAIL;
return CS_ERR_DETAIL;
}
if (!insn->id) {
handle->errnum = CS_ERR_SKIPDATA;
return CS_ERR_SKIPDATA;
}
if (!insn->detail) {
handle->errnum = CS_ERR_DETAIL;
return CS_ERR_DETAIL;
}
if (handle->reg_access) {
handle->reg_access(insn, regs_read, regs_read_count, regs_write, regs_write_count);
} else {
// this arch is unsupported yet
handle->errnum = CS_ERR_ARCH;
return CS_ERR_ARCH;
}
return CS_ERR_OK;
#endif
}
示例:
#include <iostream>
#include <stdio.h>
#include "capstone.h"
#include "platform.h"
using namespace std;
struct platform {
cs_arch arch;
cs_mode mode;
unsigned char* code;
size_t size;
const char* comment;
cs_opt_type opt_type;
cs_opt_value opt_value;
};
static void print_string_hex(unsigned char* str, size_t len)
{
unsigned char* c;
printf("Code: ");
for (c = str; c < str + len; c++) {
printf("0x%02x ", *c & 0xff);
}
printf("\n");
}
static void test()
{
#define X86_CODE64 "\x55\x48\x8b\x05\xb8\x13\x00\x00\xe9\xea\xbe\xad\xde\xff\x25\x23\x01\x00\x00\xe8\xdf\xbe\xad\xde\x74\xff"
struct platform platforms[] = {
{
CS_ARCH_X86,
CS_MODE_64,
(unsigned char*)X86_CODE64,
sizeof(X86_CODE64) - 1,
"X86 64 (Intel syntax)"
},
};
csh handle;
uint64_t address;
cs_insn* insn;
cs_detail* detail;
int i;
cs_err err;
const uint8_t* code;
size_t size;
cs_x86* x86;
cs_regs regs_read, regs_write;
uint8_t regs_read_count, regs_write_count;
int count;
for (i = 0; i < sizeof(platforms) / sizeof(platforms[0]); i++) {
printf("****************\n");
printf("Platform: %s\n", platforms[i].comment);
err = cs_open(platforms[i].arch, platforms[i].mode, &handle);
if (err) {
printf("Failed on cs_open() with error returned: %u\n", err);
abort();
}
if (platforms[i].opt_type)
cs_option(handle, platforms[i].opt_type, platforms[i].opt_value);
cs_option(handle, CS_OPT_DETAIL, CS_OPT_ON);
insn = cs_malloc(handle);
x86 = &(insn->detail->x86);
print_string_hex(platforms[i].code, platforms[i].size);
printf("Disasm:\n");
address = 0x1000;
code = platforms[i].code;
size = platforms[i].size;
while (cs_disasm_iter(handle, &code, &size, &address, insn)) {
int n;
printf("0x%" PRIx64 ":\t%s\t\t%s ",
insn->address, insn->mnemonic, insn->op_str);
cout << endl;
if (!cs_regs_access(handle, insn, //每条指令所有读取和修改的寄存器
regs_read, ®s_read_count,
regs_write, ®s_write_count)) {
if (regs_read_count) {
printf("\tRegisters read:");
for (i = 0; i < regs_read_count; i++) {
printf(" %s", cs_reg_name(handle, regs_read[i]));
}
printf("\n");
}
if (regs_write_count) {
printf("\tRegisters modified:");
for (i = 0; i < regs_write_count; i++) {
printf(" %s", cs_reg_name(handle, regs_write[i]));
}
printf("\n");
}
}
}
printf("\n");
cs_free(insn, 1);
cs_close(&handle);
}
}
int main()
{
test();
return 0;
}