You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
An error message of “Error: permute(sparse_coo): number of dimensions in the tensor input does not match the length of the desired ordering of dimensions i.e. input.dim() = 2 is not equal to len(dims) = 3” appears in the message field in the traintrain and Lora cannot be created in Forge.
#18
Open
noha2310 opened this issue
Jun 5, 2024
· 1 comment
The following is the text after the TRAINTRAIN run.
Start Training!
Loading weights [5353d90e0c] from /content/drive/MyDrive/sd/stable-diffusion-webui-forge/models/Stable-diffusion/anyloraCheckpoint_bakedvaeBlessedFp16.safetensors
model_type EPS
UNet ADM Dimension 0
Using xformers attention in VAE
Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
Using xformers attention in VAE
extra {'cond_stage_model.clip_l.text_projection', 'cond_stage_model.clip_l.logit_scale'}
left over keys: dict_keys(['alphas_cumprod', 'alphas_cumprod_prev', 'betas', 'log_one_minus_alphas_cumprod', 'posterior_log_variance_clipped', 'posterior_mean_coef1', 'posterior_mean_coef2', 'posterior_variance', 'sqrt_alphas_cumprod', 'sqrt_one_minus_alphas_cumprod', 'sqrt_recip_alphas_cumprod', 'sqrt_recipm1_alphas_cumprod'])
loaded straight to GPU
To load target model BaseModel
Begin to load 1 model
[Memory Management] Current Free GPU Memory (MB) = 13313.25634765625
[Memory Management] Model Memory (MB) = 0.00762939453125
[Memory Management] Minimal Inference Memory (MB) = 1024.0
[Memory Management] Estimated Remaining GPU Memory (MB) = 12289.248718261719
Moving model(s) has taken 0.02 seconds
To load target model SD1ClipModel
Begin to load 1 model
[Memory Management] Current Free GPU Memory (MB) = 13313.24755859375
[Memory Management] Model Memory (MB) = 454.2076225280762
[Memory Management] Minimal Inference Memory (MB) = 1024.0
[Memory Management] Estimated Remaining GPU Memory (MB) = 11835.039936065674
Moving model(s) has taken 0.11 seconds
Model loaded in 12.4s (unload existing model: 2.9s, load weights from disk: 0.4s, forge load real models: 8.8s, calculate empty prompt: 0.1s).
Preparing the Model...
Enabling Xformers
Preparing image latents and text-conditional...
max bucket sizes : [(512, 512)]
sub bucket sizes : []
Traceback (most recent call last):
File "/content/drive/MyDrive/sd/stable-diffusion-webui-forge/extensions/sd-webui-traintrain/trainer/train.py", line 195, in train_main
result = train_lora(t)
File "/content/drive/MyDrive/sd/stable-diffusion-webui-forge/extensions/sd-webui-traintrain/trainer/train.py", line 226, in train_lora
dataloaders = dataset.make_dataloaders(t)
File "/content/drive/MyDrive/sd/stable-diffusion-webui-forge/extensions/sd-webui-traintrain/trainer/dataset.py", line 15, in make_dataloaders
load_resize_image_and_text(t) #画像を読み込み、画像サイズごとに振り分け、リサイズ、テキストの読み込み
File "/content/drive/MyDrive/sd/stable-diffusion-webui-forge/extensions/sd-webui-traintrain/trainer/dataset.py", line 241, in load_resize_image_and_text
resized, alpha_mask = resize_and_crop(ar_error, image, *max, t.image_disable_upscale)
File "/content/drive/MyDrive/sd/stable-diffusion-webui-forge/extensions/sd-webui-traintrain/trainer/dataset.py", line 231, in resize_and_crop
tensor = torch.from_numpy(np.array(image)).permute(2, 0, 1).float() / 255.0
RuntimeError: permute(sparse_coo): number of dimensions in the tensor input does not match the length of the desired ordering of dimensions i.e. input.dim() = 2 is not equal to len(dims) = 3
Loading weights [9807d1172b] from /content/drive/MyDrive/sd/stable-diffusion-webui-forge/models/Stable-diffusion/anyloracleanlinearmix_v10.safetensors
model_type EPS
UNet ADM Dimension 0
Using xformers attention in VAE
Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
Using xformers attention in VAE
extra {'cond_stage_model.clip_l.text_projection', 'cond_stage_model.clip_l.logit_scale'}
left over keys: dict_keys(['model_ema.decay', 'model_ema.num_updates'])
loaded straight to GPU
To load target model BaseModel
Begin to load 1 model
[Memory Management] Current Free GPU Memory (MB) = 13294.35791015625
[Memory Management] Model Memory (MB) = 0.00762939453125
[Memory Management] Minimal Inference Memory (MB) = 1024.0
[Memory Management] Estimated Remaining GPU Memory (MB) = 12270.350280761719
Moving model(s) has taken 0.02 seconds
To load target model SD1ClipModel
Begin to load 1 model
[Memory Management] Current Free GPU Memory (MB) = 13294.34912109375
[Memory Management] Model Memory (MB) = 454.2076225280762
[Memory Management] Minimal Inference Memory (MB) = 1024.0
[Memory Management] Estimated Remaining GPU Memory (MB) = 11816.141498565674
Moving model(s) has taken 0.10 seconds
Model loaded in 21.2s (load weights from disk: 1.2s, forge load real models: 19.6s, calculate empty prompt: 0.2s).
That's all.
Reinstalling traintrain did not solve the problem and searching did not find a solution.
How can I solve this problem?
The text was updated successfully, but these errors were encountered:
noha2310
changed the title
Error: permute(sparse_coo): number of dimensions in the tensor input does not match the length of the desired ordering of dimensions i.e. input.dim() = 2 is not equal to len(dims) = 3
An error message of “Error: permute(sparse_coo): number of dimensions in the tensor input does not match the length of the desired ordering of dimensions i.e. input.dim() = 2 is not equal to len(dims) = 3” appears in the message field in the traintrain and Lora cannot be created in Forge.
Jun 5, 2024
I was also having trouble because the same error occurred, but when I reviewed the image data I was trying to learn, I realized that grayscale was mixed in, and I converted it to RGB, and it worked properly.
I will post the address of the blog referenced below.
The following is the text after the TRAINTRAIN run.
Start Training!
Loading weights [5353d90e0c] from /content/drive/MyDrive/sd/stable-diffusion-webui-forge/models/Stable-diffusion/anyloraCheckpoint_bakedvaeBlessedFp16.safetensors
model_type EPS
UNet ADM Dimension 0
Using xformers attention in VAE
Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
Using xformers attention in VAE
extra {'cond_stage_model.clip_l.text_projection', 'cond_stage_model.clip_l.logit_scale'}
left over keys: dict_keys(['alphas_cumprod', 'alphas_cumprod_prev', 'betas', 'log_one_minus_alphas_cumprod', 'posterior_log_variance_clipped', 'posterior_mean_coef1', 'posterior_mean_coef2', 'posterior_variance', 'sqrt_alphas_cumprod', 'sqrt_one_minus_alphas_cumprod', 'sqrt_recip_alphas_cumprod', 'sqrt_recipm1_alphas_cumprod'])
loaded straight to GPU
To load target model BaseModel
Begin to load 1 model
[Memory Management] Current Free GPU Memory (MB) = 13313.25634765625
[Memory Management] Model Memory (MB) = 0.00762939453125
[Memory Management] Minimal Inference Memory (MB) = 1024.0
[Memory Management] Estimated Remaining GPU Memory (MB) = 12289.248718261719
Moving model(s) has taken 0.02 seconds
To load target model SD1ClipModel
Begin to load 1 model
[Memory Management] Current Free GPU Memory (MB) = 13313.24755859375
[Memory Management] Model Memory (MB) = 454.2076225280762
[Memory Management] Minimal Inference Memory (MB) = 1024.0
[Memory Management] Estimated Remaining GPU Memory (MB) = 11835.039936065674
Moving model(s) has taken 0.11 seconds
Model loaded in 12.4s (unload existing model: 2.9s, load weights from disk: 0.4s, forge load real models: 8.8s, calculate empty prompt: 0.1s).
Preparing the Model...
Enabling Xformers
Preparing image latents and text-conditional...
max bucket sizes : [(512, 512)]
sub bucket sizes : []
Traceback (most recent call last):
File "/content/drive/MyDrive/sd/stable-diffusion-webui-forge/extensions/sd-webui-traintrain/trainer/train.py", line 195, in train_main
result = train_lora(t)
File "/content/drive/MyDrive/sd/stable-diffusion-webui-forge/extensions/sd-webui-traintrain/trainer/train.py", line 226, in train_lora
dataloaders = dataset.make_dataloaders(t)
File "/content/drive/MyDrive/sd/stable-diffusion-webui-forge/extensions/sd-webui-traintrain/trainer/dataset.py", line 15, in make_dataloaders
load_resize_image_and_text(t) #画像を読み込み、画像サイズごとに振り分け、リサイズ、テキストの読み込み
File "/content/drive/MyDrive/sd/stable-diffusion-webui-forge/extensions/sd-webui-traintrain/trainer/dataset.py", line 241, in load_resize_image_and_text
resized, alpha_mask = resize_and_crop(ar_error, image, *max, t.image_disable_upscale)
File "/content/drive/MyDrive/sd/stable-diffusion-webui-forge/extensions/sd-webui-traintrain/trainer/dataset.py", line 231, in resize_and_crop
tensor = torch.from_numpy(np.array(image)).permute(2, 0, 1).float() / 255.0
RuntimeError: permute(sparse_coo): number of dimensions in the tensor input does not match the length of the desired ordering of dimensions i.e. input.dim() = 2 is not equal to len(dims) = 3
Loading weights [9807d1172b] from /content/drive/MyDrive/sd/stable-diffusion-webui-forge/models/Stable-diffusion/anyloracleanlinearmix_v10.safetensors
model_type EPS
UNet ADM Dimension 0
Using xformers attention in VAE
Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
Using xformers attention in VAE
extra {'cond_stage_model.clip_l.text_projection', 'cond_stage_model.clip_l.logit_scale'}
left over keys: dict_keys(['model_ema.decay', 'model_ema.num_updates'])
loaded straight to GPU
To load target model BaseModel
Begin to load 1 model
[Memory Management] Current Free GPU Memory (MB) = 13294.35791015625
[Memory Management] Model Memory (MB) = 0.00762939453125
[Memory Management] Minimal Inference Memory (MB) = 1024.0
[Memory Management] Estimated Remaining GPU Memory (MB) = 12270.350280761719
Moving model(s) has taken 0.02 seconds
To load target model SD1ClipModel
Begin to load 1 model
[Memory Management] Current Free GPU Memory (MB) = 13294.34912109375
[Memory Management] Model Memory (MB) = 454.2076225280762
[Memory Management] Minimal Inference Memory (MB) = 1024.0
[Memory Management] Estimated Remaining GPU Memory (MB) = 11816.141498565674
Moving model(s) has taken 0.10 seconds
Model loaded in 21.2s (load weights from disk: 1.2s, forge load real models: 19.6s, calculate empty prompt: 0.2s).
That's all.
Reinstalling traintrain did not solve the problem and searching did not find a solution.
How can I solve this problem?
The text was updated successfully, but these errors were encountered: