-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_tad.py
48 lines (40 loc) · 1.51 KB
/
test_tad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
"""
Test Temporal Anomaly Detection model.
"""
import argparse
import numpy as np
from detection_algorithms.common.dataset_util import Dataset
from detection_algorithms.temporal_anomaly_detection.model_def import gen_model
from detection_algorithms.temporal_anomaly_detection.predict import predict
parser = argparse.ArgumentParser()
parser.add_argument('dataset_dir', action='store')
parser.add_argument('model_file', action='store')
parser.add_argument('-f', '--frame-count', action='store', default=10)
parser.add_argument('--gpu-for-face', action='store_true')
args = parser.parse_args()
print(args)
model_file = args.model_file
dataset_dir = args.dataset_dir
frame_count = int(args.frame_count)
use_gpu = args.gpu_for_face
dataset = Dataset(dataset_dir, 'faceforensics')
df = dataset.get_metadata_dataframe()
files = df.index.to_list()
file_count = len(files)
labels = df['label'].to_dict()
model = gen_model(1, frame_count)
model.load_weights(model_file).expect_partial()
model_runs = 0
confusion_matrix = np.zeros((2, 2), 'int32')
try:
for file in files:
print(f'[{model_runs}] Running model for file {file}')
verdict, output = predict(model, file, video_frames=frame_count,
use_gpu_for_face=use_gpu)
ground_truth = int(labels[file] == 'FAKE')
confusion_matrix[ground_truth][int(verdict)] += 1
with open('log.txt', 'a') as f:
f.write(f'{file}, {verdict}, {output}\n')
except KeyboardInterrupt:
print(confusion_matrix)
print(confusion_matrix)