GPT model is a variant of Decoding model. GPT model does not require the results from encoder and the cross multi-head attention, and use GeLU as the activation. However, OpenAI shows that using very giant model and lots of training data can significantly improve the capacity of GPT model in their paper. However, it is impossible to put such model into a single GPU. For example, the largest model, GPT-3, has 175 billion parameters, which takes about 350GBs under half data type. Therefore, multi-gpus, even multi-nodes, is necessary.
In FasterTransformer 4.0, we propose the multi-gpu inference library to run GPT-3. FasterTransformer supports Tensor Parallel
and Layer Parallel
in the same time and provides the api of cpp, TensorFlow/PyTorch op and triton backend. In cpp and PyTorch op, users can use MPI to run multiple gpus on multiple nodes. For example, using 4 dgx-1 V100 nodes (16 GBs memory per GPU) to run the GPT-3 model. To be convenient on serving, we also provide the triton backend. However, this backend only supports single nodes, multi-gpus currently. For TensorFlow op, FasterTransformer only supports single gpu now.
The arguments, inputs, and outputs of GPT:
- Arguments:
- Maximum batch size (B)
- Maximum sequence length (S)
- Top k value (K)
- Top p value (P)
- Head number (H)
- Size per head (N)
- Number of decoder layers
- Start id of the vocabulary
- End id of the vocabulary
- Vocab size (V)
- Tensor parallel size
- Layer parallel size
- Inputs:
- The table for embedding lookup. The shape is [ V, H x N ].
- The weights of all parameters.
- Position encoding table. The shape is [ S, H x N ].
- Inputs contexts. The shape is [ b, s ], where b <= B, s <= S.
- Outputs:
- The output ids. The shape is [b, S ].
- CMake >= 3.8 for Tensorflow, CMake >= 3.13 for PyTorch
- CUDA 10.1 or newer version
- Python 3 is recommended because some features are not supported in python 2
- Tensorflow 1.13 or 1.14 or 1.15
- PyTorch >= 1.5.0
Recommend use nvcr image like nvcr.io/nvidia/tensorflow:20.12-tf1-py3
or nvcr.io/nvidia/pytorch:20.12-py3
.
- Install required tools
pip install -r ../requirement.txt
To run the GPT on c, users need to convert the checkpoint of TensorFlow or PyTorch to binary files, and then load by FasterTransformer c api. Unfortunately, there is no published large model. So, users are only able to verify the correctness by smaller model. Currently, FasterTransformer provides two kinds of samples. First one is using the checkpoint of OpenAI GPT-2 model (which is trained by TensorFlow); Another choice is using the checkpoint of Megatron (which is trained by pytorch).
- Download vocab and merge table
They can be used in both OpenAI GPT-2 and Megatron.
wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json -P models
wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt -P models
- Downlaod openai-gpt model and convert
To convert the OpenAI GPT model to binary, FasterTransformer provides a tool sample/tensorflow/utils/openai_gpt_ckpt_convert.py
to convert the checkpoint.
python tensorflow/utils/download_gpt2_model.py <model_name>
e.g. python tensorflow/utils/download_gpt2_model.py 124M
python ../sample/tensorflow/utils/openai_gpt_ckpt_convert.py -o models/openai-gpt-models/c-model/124m/ -i models/124M/model.ckpt -g 1 # convert 124M model with 1 TP mode
python ../sample/tensorflow/utils/openai_gpt_ckpt_convert.py -o models/openai-gpt-models/c-model/124m/ -i models/124M/model.ckpt -g 4 # convert 124M model with 4 TP mode
In the repo of OpenAI, they provide many models, including 124M
, 355M
, 774M
and 1558M
- Download megatron model and convert
To convert the Megatron GPT model to binary, FasterTransformer provides a tool sample/pytorch/utils/megatron_ckpt_convert.py
to convert the checkpoint.
wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_lm_345m/versions/v0.0/zip -O megatron_lm_345m_v0.0.zip
mkdir -p models/megatron-models/345m
unzip megatron_lm_345m_v0.0.zip -d models/megatron-models/345m
git clone https://github.com/NVIDIA/Megatron-LM.git
python ../sample/pytorch/utils/megatron_ckpt_convert.py -head_num 16 -i ./models/megatron-models/345m/release/ -o ./models/megatron-models/c-model/345m/ -t_g 1 -i_g 1
python ../sample/pytorch/utils/megatron_ckpt_convert.py -head_num 16 -i ./models/megatron-models/345m/release/ -o ./models/megatron-models/c-model/345m/ -t_g 1 -i_g 8
where t_g
means the number GPUs of TP during training, and i_g
means the number of GPUs for TP during inference.
Note that there are different checkpoint version of Megatron. The version of the checkpoint above is 0. If users have trained a model by themselves, the default version of latest Megatron is 3. To convert the checkpoint with version 3, please add -checkpoint_version 3
.
-
Run GPT under on C++ with multiple gpu
1.1 Generate the
decoding_gemm_config.in
file../bin/gpt_gemm <local_batch_size> <context_local_batch_size> <head_number> <size_per_head> <vocab_size> <start_len> <tensor_para_size> <is_fp16> E.g., ./bin/gpt_gemm 8 8 12 64 50257 32 1 1
Here,
local_batch_size
can be set asbatch_size
if users do not use the layer parallelism. If users use layer parallelism, we recommand to setlocal_batch_size
to be smaller thanbatch_size
to hide the bubble. But this requires largerbatch_size
.context_local_batch_size
is used for computing the k/v cache of input. Similar tolocal_batch_size
, users can usebatch_size
directly if you don't use layer parallelism, and setting to be smaller thanbatch_size
when you use layer parallelism.1.2 Run GPT on C++
Users can see the details of arguments in
sample/cpp/gpt_config.ini
. It controls the model path, model size, tensor parallelism size, and some hyper-parameters../bin/gpt_sample
then use following script to convert the token ids to sentence.
python ../sample/pytorch/utils/convert_gpt_token.py --vocab_file=./models/gpt2-vocab.json --bpe_file=./models/gpt2-merges.txt
By setting the
is_half
ofgpt_config.ini
to 1, users can run gpt model under fp16.1.3 Run with tensor parallelism (TP), layer parallelism (LP) and pipeline parallelism (PP)
Users can use
tensor_para_size
andlayer_para_size
ingpt_config.ini
to control the size of model parallel. Besides, in the layer parallelism, we can use pipeline parallelism to reduce the bubbles. We can set thelayer_para_batch_size
to determine the real batch size for each forward. For example, if the total batch size is 4, and layer_para_batch_size is 1, then we will split the total batch into 4 parts, and each time we only use 1 batch size. Users can set them in thegpt_config.ini
.Note that we split the definition of LP and PP here, but we often combine them to hide the cost of bubble.
mpirun -n 8 ./bin/gpt_sample python ../sample/pytorch/utils/convert_gpt_token.py --vocab_file=./models/gpt2-vocab.json --bpe_file=./models/gpt2-merges.txt
1.4 Run gpt on multi-nodes
Since the c sample codes use the MPI to communicate, it can extend to multi-nodes easily, except that users need to setup some network environment to communicate between multi-nodes. The following scripts are an example to show how to run multi-nodes inference on slurm.
srun -N2 -n2 -t 600 --pty bash # Assume we get 2 nodes: prm-dgx-09 and prm-dgx-10 srun -N2 -n2 docker pull nvcr.io/nvidia/tensorflow:20.07-tf1-py3 srun -N2 -n2 nvidia-docker run -itd --rm --privileged --network=host --pid=host --cap-add=IPC_LOCK --device=/dev/infiniband -v $PWD:$PWD -w $PWD --name ft-test nvcr.io/nvidia/tensorflow:20.12-tf1-py3 /bin/bash srun -N2 -n2 nvidia-docker exec -i --env SLURM_NTASKS --env SLURM_NODEID --env SLURM_PROCID --env SLURM_STEP_NODELIST --env SLURMD_NODENAME --privileged ft-test bash -c "mkdir /root/.ssh && cp $PWD/ssh/* /root/.ssh && chmod 700 /root/.ssh && chmod 640 /root/.ssh/authorized_keys2 && chmod 400 /root/.ssh/id_rsa && apt-get update && apt-get install ssh -y && mkdir /run/sshd/ && /usr/sbin/sshd -p 11068 && nvidia-smi -lgc 1530" nvidia-docker exec -ti ft-test bash cd FasterTransformer/build mpirun --allow-run-as-root -np 2 -H prm-dgx-09:1,prm-dgx-10:1 -mca plm_rsh_args "-p 11068" ./bin/gpt_sample srun -N2 -n2 docker stop ft-test
-
Run GPT on PyTorch
Basically,
gpt_sample.py
includes the example how to declare a model, load a ckeckpoint, and forward context inputs and get generated outputs in Pytorch.For generating outputs based on context inputs, create a text file including the context inputs (line by line) and set
--sample_file_input
to the text file path. (By default, the script will generate outputs without context inputs.) Set--sample_file_output
to write the outputs to a file. Use--fp_16
to run in FP16.Run with
-h
to see more settings.python ./pytorch/gpt_sample.py -h
2.1 Run GPT with TP and PP on single node (NVIDIA DGX A100)
# No parallelism (tensor_para_size=1, layer_para_size=1) mpirun -n 1 --allow-run-as-root python ./pytorch/gpt_sample.py # TP (tensor_para_size=8, layer_para_size=1) mpirun -n 8 --allow-run-as-root python ./pytorch/gpt_sample.py --tensor_para_size=8 --layer_para_size=1 --ckpt_path="/workspace/fastertransformer/models/megatron-models/c-model/345m/8-gpu" # LP (tensor_para_size=1, layer_para_size=8) mpirun -n 8 --allow-run-as-root python ./pytorch/gpt_sample.py --tensor_para_size=1 --layer_para_size=8 --ckpt_path="/workspace/fastertransformer/models/megatron-models/c-model/345m/1-gpu" # TP and LP (tensor_para_size=4, layer_para_size=2) mpirun -n 8 --allow-run-as-root python ./pytorch/gpt_sample.py --tensor_para_size=4 --layer_para_size=2 --ckpt_path="/workspace/fastertransformer/models/megatron-models/c-model/345m/4-gpu"
For PP, set
--layer_para_batch_size
so that batch_size >= layer_para_batch_size.2.2 Run GPT with TP and PP on single-node/multi-node (NVIDIA SuperPOD)
cd <FasterTransformer root path> srun -N1 --mpi=pmix --ntasks-per-node=8 --container-image nvcr.io/nvidia/pytorch:20.12-py3 --container-mounts <FasterTransformer root path>:/workspace/fastertransformer --container-workdir /workspace/fastertransformer --pty bash mkdir build && cd build cmake -DSM=80 -DCMAKE_BUILD_TYPE=Release -DBUILD_PYT=ON .. && make -j12
- tensor_para_size=8, layer_para_size=1
srun -N1 --mpi=pmix --ntasks-per-node=8 --container-image nvcr.io/nvidia/pytorch:20.12-py3 --container-mounts <FasterTransformer root path>:/workspace/fastertransformer --container-workdir /workspace/fastertransformer/build python ./pytorch/gpt_sample.py --tensor_para_size=8 --layer_para_size=1 --ckpt_path="/workspace/fastertransformer/models/megatron-models/c-model/345m/8-gpu"
- tensor_para_size=8, layer_para_size=2
srun -N2 --mpi=pmix --ntasks-per-node=8 --container-image nvcr.io/nvidia/pytorch:20.12-py3 --container-mounts <FasterTransformer root path>:/workspace/fastertransformer --container-workdir /workspace/fastertransformer/build python ./pytorch/gpt_sample.py --tensor_para_size=8 --layer_para_size=2 --ckpt_path="/workspace/fastertransformer/models/megatron-models/c-model/345m/8-gpu"
-
Run GPT on tensorflow
Note that the tensorflow op only supports single gpu.
./bin/gpt_gemm 4 4 12 64 50257 1 1 1 python tensorflow/gpt_sample.py --batch_size=4 \ --length=32 \ --top_k=4 \ --top_p=0.6 \ --data_type=fp16
Details are in transformer_backend
Hardware settings:
- 8xA100-80GBs (with mclk 1593MHz, pclk 1410MHz) with AMD EPYC 7742 64-Core Processor
We demonstrate the inference time of Megatron and FasterTransformer on Triton, and show the speedup of FasterTransformer compare to Megatron. In the experiments of encoder, we updated the following parameters:
- head_num = 96
- size_per_head = 128
- num_layers = 48 for GPT-89B model, 96 for GPT-175B model
- data_type = FP16
- vocab_size = 51200
- top_p = 0.9
- tensor parallel size = 8
Batch_size | Input Seqlen | Output Seqlen | Megatron Latency (ms) |
FT Latency (ms) |
FT Speedup |
---|---|---|---|---|---|
1 | 128 | 8 | 342.86 | 279.44 | 1.23 |
2 | 128 | 8 | 369.43 | 280.24 | 1.32 |
4 | 128 | 8 | 540.97 | 317.71 | 1.70 |
8 | 128 | 8 | 912.46 | 377.50 | 2.42 |
12 | 128 | 8 | 1263.39 | 445.46 | 2.84 |
16 | 128 | 8 | 1663.39 | 524.80 | 3.17 |
20 | 128 | 8 | 1991.16 | 575.83 | 3.46 |
32 | 128 | 8 | 3086.85 | 786.57 | 3.92 |
1 | 512 | 32 | 1244.81 | 887.52 | 1.40 |
2 | 512 | 32 | 1357.54 | 940.11 | 1.44 |
4 | 512 | 32 | 1970.08 | 1133.22 | 1.74 |
8 | 512 | 32 | 3341.66 | 1415.02 | 2.36 |
16 | 512 | 32 | 6090.07 | 1952.2 | 3.12 |
Batch_size | Input Seqlen | Output Seqlen | Megatron Latency (ms) |
FT Latency (ms) |
FT Speedup |
---|---|---|---|---|---|
1 | 128 | 8 | 660.38 | 488.86 | 1.35 |
2 | 128 | 8 | 687.34 | 509.47 | 1.35 |
4 | 128 | 8 | 1004.88 | 629.64 | 1.60 |
8 | 128 | 8 | 1705.07 | 749.86 | 2.27 |
12 | 128 | 8 | 2365.02 | 886.24 | 2.67 |
16 | 128 | 8 | 3111.57 | 1037.47 | 3.00 |
20 | 128 | 8 | 3723.73 | 1135.72 | 3.28 |
32 | 128 | 8 | 5778.72 | 1547.44 | 3.73 |
1 | 512 | 32 | 2384.78 | 1719.96 | 1.39 |
2 | 512 | 32 | 2503.24 | 1830.56 | 1.37 |
4 | 512 | 32 | 3658.65 | 2092.56 | 1.75 |
8 | 512 | 32 | 6238.79 | 2629.97 | 2.37 |
16 | 512 | 32 | 11409.53 | 3706.23 | 3.08 |