-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathml_play.py
203 lines (189 loc) · 8.08 KB
/
ml_play.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""
The template of the script for the machine learning process in game pingpong
"""
# Import the necessary modules and classes
from mlgame.communication import ml as comm
import torch
import torch.nn as nn
import torch.nn.functional as F
from sklearn.externals import joblib
from os import path
import numpy as np
def ml_loop(side: str):
"""
The main loop for the machine learning process
The `side` parameter can be used for switch the code for either of both sides,
so you can write the code for both sides in the same script. Such as:
```python
if side == "1P":
ml_loop_for_1P()
else:
ml_loop_for_2P()
```
@param side The side which this script is executed for. Either "1P" or "2P".
"""
class Model(nn.Module): #model4
def __init__(self, input_shape):
super().__init__()
self.nn1 = nn.Linear(input_shape, 128)
self.nn2 = nn.Linear(128, 256)
self.nn3 = nn.Linear(256, 512)
self.nn4 = nn.Linear(512, 1024)
self.nn5 = nn.Linear(1024, 1)
def forward(self, x):
x = F.relu(self.nn1(x))
x = F.relu(self.nn2(x))
x = F.relu(self.nn3(x))
x = F.relu(self.nn4(x))
x = self.nn5(x)
return x
'''class Model(nn.Module): #model5
def __init__(self, input_shape):
super().__init__()
self.nn1 = nn.Linear(input_shape, 256)
self.nn2 = nn.Linear(256, 512)
self.nn3 = nn.Linear(512, 1024)
self.nn4 = nn.Linear(1024, 3)
def forward(self, x):
x = F.relu(self.nn1(x))
x = F.relu(self.nn2(x))
x = F.relu(self.nn3(x))
x = self.nn4(x)
return x'''
class ActionModel(nn.Module):
def __init__(self, input_shape):
super().__init__()
self.nn1 = nn.Linear(input_shape, 128)
self.nn2 = nn.Linear(128, 3)
def forward(self, x):
x = F.relu(self.nn1(x))
x = self.nn2(x)
return x
# === Here is the execution order of the loop === #
# 1. Put the initialization code here
ball_served = False
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
filename = path.join(path.dirname(__file__), 'save', 'model.ckpt')
model = Model(6).to(device)
model.load_state_dict(torch.load(filename))
filename = path.join(path.dirname(__file__), 'save', 'nn_scaler.pickle')
scaler = joblib.load(filename)
filename = path.join(path.dirname(__file__), 'save', 'ActionModel.ckpt')
actionModel = ActionModel(5).to(device)
actionModel.load_state_dict(torch.load(filename))
filename = path.join(path.dirname(__file__), 'save', 'ActionNN_scaler.pickle')
actionScaler = joblib.load(filename)
direction = True
def move_to(player, pred):
#move platform to predicted position to catch ball
if player == '1P':
if scene_info["platform_1P"][0]+20 > (pred-10) and scene_info["platform_1P"][0]+20 < (pred+10): return 0 # NONE
elif scene_info["platform_1P"][0]+20 <= (pred-10) : return 1 # goes right
else : return 2 # goes left
else :
if scene_info["platform_2P"][0]+20 > (pred-10) and scene_info["platform_2P"][0]+20 < (pred+10): return 0 # NONE
elif scene_info["platform_2P"][0]+20 <= (pred-10) : return 1 # goes right
else : return 2 # goes left
def ml_loop_for_1P():
'''if scene_info['ball_speed'][0] > 0 and scene_info['ball_speed'][1] > 0:
ballDirection = 0
if scene_info['ball_speed'][0] > 0 and scene_info['ball_speed'][1] < 0:
ballDirection = 1
if scene_info['ball_speed'][0] < 0 and scene_info['ball_speed'][1] > 0:
ballDirection = 2
if scene_info['ball_speed'][0] < 0 and scene_info['ball_speed'][1] < 0:
ballDirection = 3'''
x = scene_info['ball'] + scene_info['ball_speed'] + (scene_info['blocker'][0],) + ((1,) if direction else (0,))
#x = scene_info['ball'] + scene_info['ball_speed'] + (scene_info['platform_1P'][0],) + (scene_info['blocker'][0],) + ((1,) if direction else (0,)) + (ballDirection,)
x = torch.tensor(x).reshape(1, -1)
x = scaler.transform(x)
x = torch.tensor(x).reshape(1, -1).float()
y = model(x)
'''y = torch.max(y, 1)[1]
if y == 0:
return 0
elif y == 1:
return 1
else:
return 2'''
y = 5 * round(y.item() / 5.0)
if y < 0:
y = 0
elif y > 195:
y = 195
if scene_info['ball'][1] >= 415 - scene_info['ball_speed'][1] and scene_info["platform_1P"][0] < y < scene_info["platform_1P"][0] + 40:
x = (scene_info['ball'][0],) + scene_info['ball_speed'] + (scene_info['blocker'][0],) + ((1,) if direction else (0,))
x = torch.tensor(x).reshape(1, -1)
x = actionScaler.transform(x)
x = torch.tensor(x).reshape(1, -1).float()
case = actionModel(x)
case = torch.max(case, 1)
case = case[1].item()
if case == 0:
return 1
elif case == 1:
return 2
else:
return 0
elif scene_info['platform_1P'][0] + 20 > y:
return 2
elif scene_info['platform_1P'][0] + 20 < y:
return 1
else:
return 0
def ml_loop_for_2P(): # as same as 1P
if scene_info["ball_speed"][1] > 0 :
return move_to(player = '2P',pred = 100)
else :
x = ( scene_info["platform_2P"][1]+30-scene_info["ball"][1] ) // scene_info["ball_speed"][1]
pred = scene_info["ball"][0]+(scene_info["ball_speed"][0]*x)
bound = pred // 200
if (bound > 0):
if (bound%2 == 0):
pred = pred - bound*200
else :
pred = 200 - (pred - 200*bound)
elif (bound < 0) :
if bound%2 ==1:
pred = abs(pred - (bound+1) *200)
else :
pred = pred + (abs(bound)*200)
return move_to(player = '2P',pred = pred)
# 2. Inform the game process that ml process is ready
comm.ml_ready()
# 3. Start an endless loop
while True:
# 3.1. Receive the scene information sent from the game process
scene_info = comm.recv_from_game()
if scene_info['frame'] == 1:
if scene_info['blocker'][0] > last_block:
direction = True
else:
direction = False
last_block = scene_info["blocker"][0]
# 3.2. If either of two sides wins the game, do the updating or
# resetting stuff and inform the game process when the ml process
# is ready.
if scene_info["status"] != "GAME_ALIVE":
# Do some updating or resetting stuff
ball_served = False
# 3.2.1 Inform the game process that
# the ml process is ready for the next round
comm.ml_ready()
continue
# 3.3 Put the code here to handle the scene information
# 3.4 Send the instruction for this frame to the game process
if not ball_served:
comm.send_to_game({"frame": scene_info["frame"], "command": "SERVE_TO_LEFT"})
ball_served = True
else:
if side == "1P":
command = ml_loop_for_1P()
else:
command = ml_loop_for_2P()
if command == 0:
comm.send_to_game({"frame": scene_info["frame"], "command": "NONE"})
elif command == 1:
comm.send_to_game({"frame": scene_info["frame"], "command": "MOVE_RIGHT"})
else:
comm.send_to_game({"frame": scene_info["frame"], "command": "MOVE_LEFT"})