-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
Copy path3SumClosest.cpp
104 lines (92 loc) · 3.08 KB
/
3SumClosest.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
// Source : https://oj.leetcode.com/problems/3sum-closest/
// Author : Hao Chen
// Date : 2014-07-03
/**********************************************************************************
*
* Given an array S of n integers, find three integers in S such that the sum is
* closest to a given number, target. Return the sum of the three integers.
* You may assume that each input would have exactly one solution.
*
* For example, given array S = {-1 2 1 -4}, and target = 1.
*
* The sum that is closest to the target is 2. (-1 + 2 + 1 = 2).
*
*
**********************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <vector>
#include <set>
#include <algorithm>
using namespace std;
#define INT_MAX 2147483647
//solution: http://en.wikipedia.org/wiki/3SUM
//the idea as blow:
// 1) sort the array.
// 2) take the element one by one, calculate the two numbers in reset array.
//
//notes: be careful the duplication number.
//
// for example:
// [-4,-1,-1,1,2] target=1
//
// take -4, can cacluate the "two number problem" of the reset array [-1,-1,1,2] while target=5
// [(-4),-1,-1,1,2] target=5 distance=4
// ^ ^
// because the -1+2 = 1 which < 5, then move the `low` pointer(skip the duplication)
// [(-4),-1,-1,1,2] target=5 distance=2
// ^ ^
// take -1(skip the duplication), can cacluate the "two number problem" of the reset array [1,2] while target=2
// [-4,-1,(-1),1,2] target=2 distance=1
// ^ ^
int threeSumClosest(vector<int> &num, int target) {
//sort the array
sort(num.begin(), num.end());
int n = num.size();
int distance = INT_MAX;
int result;
for (int i=0; i<n-2; i++) {
//skip the duplication
if (i > 0 && num[i - 1] == num[i]) continue;
int a = num[i];
int low = i + 1;
int high = n - 1;
//convert the 3sum to 2sum problem
while (low < high) {
int b = num[low];
int c = num[high];
int sum = a + b + c;
if (sum - target == 0) {
//got the final soultion
return target;
} else {
//tracking the minmal distance
if (abs(sum - target) < distance ) {
distance = abs(sum - target);
result = sum;
}
if (sum - target > 0) {
//skip the duplication
while(high > 0 && num[high] == num[high - 1]) high--;
//move the `high` pointer
high--;
} else {
//skip the duplication
while(low < n && num[low] == num[low + 1]) low++;
//move the `low` pointer
low++;
}
}
}
}
return result;
}
int main()
{
int a[] = { -1, 2, 1, -4 };
vector<int> n(a, a + sizeof(a)/sizeof(int));
int target = 1;
cout << threeSumClosest(n, target) << endl;
return 0;
}