-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
Copy pathFormArrayByConcatenatingSubarraysOfAnotherArray.cpp
101 lines (93 loc) · 3.77 KB
/
FormArrayByConcatenatingSubarraysOfAnotherArray.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
// Source : https://leetcode.com/problems/form-array-by-concatenating-subarrays-of-another-array/
// Author : Hao Chen
// Date : 2021-03-27
/*****************************************************************************************************
*
* You are given a 2D integer array groups of length n. You are also given an integer array nums.
*
* You are asked if you can choose n disjoint subarrays from the array nums such that the i^th
* subarray is equal to groups[i] (0-indexed), and if i > 0, the (i-1)^th subarray appears before the
* i^th subarray in nums (i.e. the subarrays must be in the same order as groups).
*
* Return true if you can do this task, and false otherwise.
*
* Note that the subarrays are disjoint if and only if there is no index k such that nums[k] belongs
* to more than one subarray. A subarray is a contiguous sequence of elements within an array.
*
* Example 1:
*
* Input: groups = [[1,-1,-1],[3,-2,0]], nums = [1,-1,0,1,-1,-1,3,-2,0]
* Output: true
* Explanation: You can choose the 0^th subarray as [1,-1,0,1,-1,-1,3,-2,0] and the 1^st one as
* [1,-1,0,1,-1,-1,3,-2,0].
* These subarrays are disjoint as they share no common nums[k] element.
*
* Example 2:
*
* Input: groups = [[10,-2],[1,2,3,4]], nums = [1,2,3,4,10,-2]
* Output: false
* Explanation: Note that choosing the subarrays [1,2,3,4,10,-2] and [1,2,3,4,10,-2] is incorrect
* because they are not in the same order as in groups.
* [10,-2] must come before [1,2,3,4].
*
* Example 3:
*
* Input: groups = [[1,2,3],[3,4]], nums = [7,7,1,2,3,4,7,7]
* Output: false
* Explanation: Note that choosing the subarrays [7,7,1,2,3,4,7,7] and [7,7,1,2,3,4,7,7] is invalid
* because they are not disjoint.
* They share a common elements nums[4] (0-indexed).
*
* Constraints:
*
* groups.length == n
* 1 <= n <= 10^3
* 1 <= groups[i].length, sum(groups[i].length) <= 10^3
* 1 <= nums.length <= 10^3
* -10^7 <= groups[i][j], nums[k] <= 10^7
******************************************************************************************************/
class Solution {
public:
bool canChoose(vector<vector<int>>& groups, vector<int>& nums) {
//constructing an length array
// lens[0] = len(groups[0]) + len(groups[1]) + ... len(groups[n])
// lens[1] = len(groups[1]) + len(groups[2]) + ... len(groups[n])
// lens[2] = len(groups[2]) + len(groups[3]) + ... len(groups[n])
// lens[n] = len(groups[n])
//so that, we can quickly know whether there still has enough room to match rest groups
vector<int> lens(groups.size());
int total_len=0;
for(int i=groups.size()-1; i >=0; i--) {
total_len += groups[i].size();
lens[i] = total_len;
}
// index i - loop for groups[]
// index j - loop for nums[]
int i = 0, j = 0;
while ( i < groups.size() && j < nums.size() ) {
//if the rest room is not enought to match, return false;
if (nums.size() - j < lens[i]) return false;
//if the first char is not matched, check the next.
if ( nums[j] != groups[i][0]) {
j++;
continue;
}
//if the first char is matched, then check the groups[i]
bool match = true;
for(int k=0; k<groups[i].size(); k++) {
if ( nums[j+k] != groups[i][k]) {
match=false;
break;
}
}
// if the groups[i] is matched, then go to next group
if (match) {
j += groups[i].size();
i++;
}else{
j++;
}
}
return i == groups.size();
}
};