-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
Copy pathIntervalListIntersections.cpp
94 lines (88 loc) · 3.34 KB
/
IntervalListIntersections.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
// Source : https://leetcode.com/problems/interval-list-intersections/
// Author : Hao Chen
// Date : 2019-02-05
/*****************************************************************************************************
*
* Given two lists of closed intervals, each list of intervals is pairwise disjoint and in sorted
* order.
*
* Return the intersection of these two interval lists.
*
* (Formally, a closed interval [a, b] (with a <= b) denotes the set of real numbers x with a <= x <=
* b. The intersection of two closed intervals is a set of real numbers that is either empty, or can
* be represented as a closed interval. For example, the intersection of [1, 3] and [2, 4] is [2, 3].)
*
* Example 1:
*
* 0 2 5 10 13 23 24 25
* A +---+ +-------+ +-------------+ +--+
*
* 1 5 8 12 15 24 25 26
* B +------+ +------+ +----------+ +--+
*
* 1 2 5 8 10 15 23 24 25
* Ans ++ + +--+ +--------+ + +
*
*
* Input: A = [[0,2],[5,10],[13,23],[24,25]], B = [[1,5],[8,12],[15,24],[25,26]]
* Output: [[1,2],[5,5],[8,10],[15,23],[24,24],[25,25]]
* Reminder: The inputs and the desired output are lists of Interval objects, and not arrays or lists.
*
* Note:
*
* 0 <= A.length < 1000
* 0 <= B.length < 1000
* 0 <= A[i].start, A[i].end, B[i].start, B[i].end < 109
*
******************************************************************************************************/
/**
* Definition for an interval.
* struct Interval {
* int start;
* int end;
* Interval() : start(0), end(0) {}
* Interval(int s, int e) : start(s), end(e) {}
* };
*/
class Solution {
public:
//return true if lhs starts earlier than rhs
bool compareInterval(Interval& lhs, Interval& rhs) {
return lhs.start < rhs.start;
}
//check two interval overlapped or not
bool overlapped(Interval& lhs, Interval& rhs) {
return (compareInterval(lhs, rhs)) ?
lhs.end >= rhs.start:
rhs.end >= lhs.start;
}
//merge two interval - return the intersections of two intervals
Interval mergeTwoInterval(Interval& lhs, Interval& rhs) {
Interval result;
result.start = max(lhs.start, rhs.start);
result.end = min(lhs.end, rhs.end);
return result;
}
vector<Interval> intervalIntersection(vector<Interval>& A, vector<Interval>& B) {
int lenA = A.size();
int lenB = B.size();
vector<Interval> result;
if (lenA <=0 || lenB<=0) return result; //edge case
int i=0, j=0;
while ( i < lenA && j < lenB ) {
if( overlapped(A[i], B[j]) ) {
result.push_back(mergeTwoInterval(A[i], B[j]));
// if the current interval is not overlapped with next one,
// then we move the next interval.
int nexti = i;
if ( j==lenB-1 || !overlapped(A[i], B[j+1]) ) nexti=i+1;
if ( i==lenA-1 || !overlapped(A[i+1], B[j]) ) j++;
i = nexti;
}else{
//if not overlapped, we just move the next one
compareInterval(A[i], B[j]) ? i++ : j++;
}
}
return result;
}
};