-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
Copy pathMaximumNumberOfGroupsGettingFreshDonuts.cpp
84 lines (76 loc) · 3.09 KB
/
MaximumNumberOfGroupsGettingFreshDonuts.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
// Source : https://leetcode.com/problems/maximum-number-of-groups-getting-fresh-donuts/
// Author : Hao Chen
// Date : 2021-04-08
/*****************************************************************************************************
*
* There is a donuts shop that bakes donuts in batches of batchSize. They have a rule where they must
* serve all of the donuts of a batch before serving any donuts of the next batch. You are given an
* integer batchSize and an integer array groups, where groups[i] denotes that there is a group of
* groups[i] customers that will visit the shop. Each customer will get exactly one donut.
*
* When a group visits the shop, all customers of the group must be served before serving any of the
* following groups. A group will be happy if they all get fresh donuts. That is, the first customer
* of the group does not receive a donut that was left over from the previous group.
*
* You can freely rearrange the ordering of the groups. Return the maximum possible number of happy
* groups after rearranging the groups.
*
* Example 1:
*
* Input: batchSize = 3, groups = [1,2,3,4,5,6]
* Output: 4
* Explanation: You can arrange the groups as [6,2,4,5,1,3]. Then the 1^st, 2^nd, 4^th, and 6^th
* groups will be happy.
*
* Example 2:
*
* Input: batchSize = 4, groups = [1,3,2,5,2,2,1,6]
* Output: 4
*
* Constraints:
*
* 1 <= batchSize <= 9
* 1 <= groups.length <= 30
* 1 <= groups[i] <= 10^9
******************************************************************************************************/
class Solution {
public:
int maxHappyGroups(int batchSize, vector<int>& groups) {
vector<int> reminder(batchSize, 0);
for(auto& g : groups) {
reminder[g % batchSize]++;
}
// greedy for reminder is zero and two groups reminder is zero.
// for example: batchSize = 3, groups = [1,2,3,4,5,6]
// then we will find: (3) (6) (1,5) (2,4)
// greedy for one group
int result = reminder[0];
//greedy for two groups
for (int i=1; i<=batchSize/2; i++){
if (reminder[i] == 0 || reminder[batchSize-i] == 0 ) continue;
int m = (i == batchSize-i) ?
reminder[i]/2 :
min(reminder[i], reminder[batchSize-i]);
reminder[i] -= m;
reminder[batchSize-i] -= m;
result += m;
}
map<vector<int>, int> cache;
//DFS for the rest groups
result += dfs(reminder, batchSize, 0, cache);
return result;
}
int dfs(vector<int>& reminder, int batchSize, int sum, map<vector<int>, int>& cache) {
if (cache.find(reminder) != cache.end()) return cache[reminder];
int ret = 0;
int bonus = sum == 0 ? 1: 0;
for(int i=1; i<batchSize; i++) {
if (reminder[i] <= 0) continue;
reminder[i]--;
ret = max(ret, bonus + dfs(reminder, batchSize, (sum + i) % batchSize, cache));
reminder[i]++;
}
cache[reminder] = ret;
return ret;
}
};