-
Notifications
You must be signed in to change notification settings - Fork 130
/
Copy pathinference.py
235 lines (199 loc) · 9.96 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import gc
import os
import random
import numpy as np
from scipy.signal.windows import hann
import soundfile as sf
import torch
from cog import BasePredictor, Input, Path
import tempfile
import argparse
import librosa
from audiosr import build_model, super_resolution
from scipy import signal
import pyloudnorm as pyln
import warnings
warnings.filterwarnings("ignore")
os.environ["TOKENIZERS_PARALLELISM"] = "true"
torch.set_float32_matmul_precision("high")
def match_array_shapes(array_1:np.ndarray, array_2:np.ndarray):
if (len(array_1.shape) == 1) & (len(array_2.shape) == 1):
if array_1.shape[0] > array_2.shape[0]:
array_1 = array_1[:array_2.shape[0]]
elif array_1.shape[0] < array_2.shape[0]:
array_1 = np.pad(array_1, ((array_2.shape[0] - array_1.shape[0], 0)), 'constant', constant_values=0)
else:
if array_1.shape[1] > array_2.shape[1]:
array_1 = array_1[:,:array_2.shape[1]]
elif array_1.shape[1] < array_2.shape[1]:
padding = array_2.shape[1] - array_1.shape[1]
array_1 = np.pad(array_1, ((0,0), (0,padding)), 'constant', constant_values=0)
return array_1
def lr_filter(audio, cutoff, filter_type, order=12, sr=48000):
audio = audio.T
nyquist = 0.5 * sr
normal_cutoff = cutoff / nyquist
b, a = signal.butter(order//2, normal_cutoff, btype=filter_type, analog=False)
sos = signal.tf2sos(b, a)
filtered_audio = signal.sosfiltfilt(sos, audio)
return filtered_audio.T
class Predictor(BasePredictor):
def setup(self, model_name="basic", device="auto"):
self.model_name = model_name
self.device = device
self.sr = 48000
print("Loading Model...")
self.audiosr = build_model(model_name=self.model_name, device=self.device)
# print(self.audiosr)
# exit()
print("Model loaded!")
def process_audio(self, input_file, chunk_size=5.12, overlap=0.1, seed=None, guidance_scale=3.5, ddim_steps=50):
audio, sr = librosa.load(input_file, sr=input_cutoff * 2, mono=False)
audio = audio.T
sr = input_cutoff * 2
print(f"audio.shape = {audio.shape}")
print(f"input cutoff = {input_cutoff}")
is_stereo = len(audio.shape) == 2
audio_channels = [audio] if not is_stereo else [audio[:, 0], audio[:, 1]]
print("audio is stereo" if is_stereo else "Audio is mono")
chunk_samples = int(chunk_size * sr)
overlap_samples = int(overlap * chunk_samples)
output_chunk_samples = int(chunk_size * self.sr)
output_overlap_samples = int(overlap * output_chunk_samples)
enable_overlap = overlap > 0
print(f"enable_overlap = {enable_overlap}")
def process_chunks(audio):
chunks = []
original_lengths = []
start = 0
while start < len(audio):
end = min(start + chunk_samples, len(audio))
chunk = audio[start:end]
if len(chunk) < chunk_samples:
original_lengths.append(len(chunk))
chunk = np.concatenate([chunk, np.zeros(chunk_samples - len(chunk))])
else:
original_lengths.append(chunk_samples)
chunks.append(chunk)
start += chunk_samples - overlap_samples if enable_overlap else chunk_samples
return chunks, original_lengths
# Process both channels (mono or stereo)
chunks_per_channel = [process_chunks(channel) for channel in audio_channels]
sample_rate_ratio = self.sr / sr
total_length = len(chunks_per_channel[0][0]) * output_chunk_samples - (len(chunks_per_channel[0][0]) - 1) * (output_overlap_samples if enable_overlap else 0)
reconstructed_channels = [np.zeros((1, total_length)) for _ in audio_channels]
meter_before = pyln.Meter(sr)
meter_after = pyln.Meter(self.sr)
# Process chunks for each channel
for ch_idx, (chunks, original_lengths) in enumerate(chunks_per_channel):
for i, chunk in enumerate(chunks):
loudness_before = meter_before.integrated_loudness(chunk)
print(f"Processing chunk {i+1} of {len(chunks)} for {'Left/Mono' if ch_idx == 0 else 'Right'} channel")
with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as temp_wav:
sf.write(temp_wav.name, chunk, sr)
out_chunk = super_resolution(
self.audiosr,
temp_wav.name,
seed=seed,
guidance_scale=guidance_scale,
ddim_steps=ddim_steps,
latent_t_per_second=12.8
)
out_chunk = out_chunk[0]
num_samples_to_keep = int(original_lengths[i] * sample_rate_ratio)
out_chunk = out_chunk[:, :num_samples_to_keep].squeeze()
loudness_after = meter_after.integrated_loudness(out_chunk)
out_chunk = pyln.normalize.loudness(out_chunk, loudness_after, loudness_before)
if enable_overlap:
actual_overlap_samples = min(output_overlap_samples, num_samples_to_keep)
fade_out = np.linspace(1., 0., actual_overlap_samples)
fade_in = np.linspace(0., 1., actual_overlap_samples)
if i == 0:
out_chunk[-actual_overlap_samples:] *= fade_out
elif i < len(chunks) - 1:
out_chunk[:actual_overlap_samples] *= fade_in
out_chunk[-actual_overlap_samples:] *= fade_out
else:
out_chunk[:actual_overlap_samples] *= fade_in
start = i * (output_chunk_samples - output_overlap_samples if enable_overlap else output_chunk_samples)
end = start + out_chunk.shape[0]
reconstructed_channels[ch_idx][0, start:end] += out_chunk.flatten()
reconstructed_audio = np.stack(reconstructed_channels, axis=-1) if is_stereo else reconstructed_channels[0]
if multiband_ensemble:
low, _ = librosa.load(input_file, sr=48000, mono=False)
output = match_array_shapes(reconstructed_audio[0].T, low)
low = lr_filter(low.T, crossover_freq, 'lowpass', order=10)
high = lr_filter(output.T, crossover_freq, 'highpass', order=10)
high = lr_filter(high, 23000, 'lowpass', order=2)
output = low + high
else:
output = reconstructed_audio[0]
# print(output, type(output))
return output
def predict(self,
input_file: Path = Input(description="Audio to upsample"),
ddim_steps: int = Input(description="Number of inference steps", default=50, ge=10, le=500),
guidance_scale: float = Input(description="Scale for classifier free guidance", default=3.5, ge=1.0, le=20.0),
overlap: float = Input(description="overlap size", default=0.04),
chunk_size: float = Input(description="chunksize", default=10.24),
seed: int = Input(description="Random seed. Leave blank to randomize the seed", default=None)
) -> Path:
if seed == 0:
seed = random.randint(0, 2**32 - 1)
print(f"Setting seed to: {seed}")
print(f"overlap = {overlap}")
print(f"guidance_scale = {guidance_scale}")
print(f"ddim_steps = {ddim_steps}")
print(f"chunk_size = {chunk_size}")
print(f"multiband_ensemble = {multiband_ensemble}")
print(f"input file = {os.path.basename(input_file)}")
os.makedirs(output_folder, exist_ok=True)
waveform = self.process_audio(
input_file,
chunk_size=chunk_size,
overlap=overlap,
seed=seed,
guidance_scale=guidance_scale,
ddim_steps=ddim_steps
)
filename = os.path.splitext(os.path.basename(input_file))[0]
sf.write(f"{output_folder}/SR_{filename}.wav", data=waveform, samplerate=48000, subtype="PCM_16")
print(f"file created: {output_folder}/SR_{filename}.wav")
del self.audiosr, waveform
gc.collect()
torch.cuda.empty_cache()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Find volume difference of two audio files.")
parser.add_argument("--input", help="Path to input audio file")
parser.add_argument("--output", help="Output folder")
parser.add_argument("--ddim_steps", help="Number of ddim steps", type=int, required=False, default=50)
parser.add_argument("--chunk_size", help="chunk size", type=float, required=False, default=10.24)
parser.add_argument("--guidance_scale", help="Guidance scale value", type=float, required=False, default=3.5)
parser.add_argument("--seed", help="Seed value, 0 = random seed", type=int, required=False, default=0)
parser.add_argument("--overlap", help="overlap value", type=float, required=False, default=0.04)
parser.add_argument("--multiband_ensemble", type=bool, help="Use multiband ensemble with input")
parser.add_argument("--input_cutoff", help="Define the crossover of audio input in the multiband ensemble", type=int, required=False, default=12000)
args = parser.parse_args()
input_file_path = args.input
output_folder = args.output
ddim_steps = args.ddim_steps
chunk_size = args.chunk_size
guidance_scale = args.guidance_scale
seed = args.seed
overlap = args.overlap
input_cutoff = args.input_cutoff
multiband_ensemble = args.multiband_ensemble
crossover_freq = input_cutoff - 1000
p = Predictor()
p.setup(device='auto')
out = p.predict(
input_file_path,
ddim_steps=ddim_steps,
guidance_scale=guidance_scale,
seed=seed,
chunk_size=chunk_size,
overlap=overlap
)
del p
gc.collect()
torch.cuda.empty_cache()