-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtriplet_eval_config.py
39 lines (34 loc) · 2.38 KB
/
triplet_eval_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# encoding:utf-8
class Config(object):
backbone_type = 'se-resnext50'
# backbone_type = 'mobilenet'
# backbone_type = 'shufflenet'
input_size = 448
train_datasets_bpath = ['/dev/shm/datasets/201906-0807_all/train', '/dev/shm/datasets/UE4_cls_0905/train', '/dev/shm/datasets/cls_0808-12/train', '/dev/shm/datasets/cls_0813/train', '/dev/shm/datasets/cls_0820/train', '/dev/shm/datasets/cls_0821/train', '/dev/shm/datasets/cls_0822/train', '/dev/shm/datasets/cls_0819_zh/train', '/dev/shm/datasets/cls_0814-16/train', '/dev/shm/datasets/0826-0829_all/train', '/dev/shm/datasets/cls_0903/train', '/dev/shm/datasets/cls_0905/all', '/dev/shm/datasets/cls_0906/all', '/dev/shm/datasets/cls_1_0909/all', '/dev/shm/datasets/cls_2_0909/all', '/dev/shm/datasets/cls_3_0909/all']
test_datasets_bpath = ['/dev/shm/datasets/201906-0807_all/val', '/dev/shm/datasets/UE4_cls_0905/val', '/dev/shm/datasets/cls_0808-12/val', '/dev/shm/datasets/cls_0813/val', '/dev/shm/datasets/cls_0820/val', '/dev/shm/datasets/cls_0821/val', '/dev/shm/datasets/cls_0822/val', '/dev/shm/datasets/cls_0819_zh/val', '/dev/shm/datasets/cls_0814-16/val', '/dev/shm/datasets/0826-0829_all/val', '/dev/shm/datasets/cls_0903/val', '/dev/shm/datasets/cls_0905/all', '/dev/shm/datasets/cls_0906/all', '/dev/shm/datasets/cls_1_0909/all', '/dev/shm/datasets/cls_2_0909/all', '/dev/shm/datasets/cls_3_0909/all']
# train_datasets_bpath = ['/data/datasets/truth_data/classify_data/201907/20190701']
# test_datasets_bpath = ['/data/datasets/truth_data/classify_data/201907/20190701']
# use_center_loss = True
additive_loss_type = 'CenterLoss'# 'COCOLoss'
use_focal_loss = True
feature_extract = False
use_pre_train = False
input_3x3 = True
model_bpath = '/data/train_models/classify_models/triplet_models/%s_%d_0918'%(backbone_type, input_size)
resume_from_path = "%s/best.pth"%(model_bpath)
fp16_using = True
random_shuffle = True
resume_epoch = 0
epoch_num = 8
# model_bpath = '/data/haoran/t/%s_%d_0911'%(backbone_type, input_size)
id_name_txt = model_bpath + '/id.txt'
log_name = 'train.log'
vis_log = model_bpath + '/vis.log'
gpu_ids = [0]
batch_size = 1
class_num = 3000
same_cate_prob = 0.5
dataLoader_util = 'cv2' # cv2, PIL or jpeg4py (jpeg4py is faster)
worker_numbers = 4
def __init__(self):
super(Config, self).__init__()