forked from longcw/pytorch2caffe
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pytorch2caffe.py
405 lines (355 loc) · 15.9 KB
/
pytorch2caffe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import sys
sys.path.append('/extra/caffe/build_caffe/caffe_rtpose/python')
import caffe
from collections import OrderedDict
import torch.nn as nn
import torch.nn.functional as F
import torch
import numpy as np
from torch.autograd import Variable
from prototxt import *
import pydot
layer_dict = {'ConvNdBackward': 'Convolution',
'ThresholdBackward': 'ReLU',
'MaxPool2dBackward': 'Pooling',
'AvgPool2dBackward': 'Pooling',
'DropoutBackward': 'Dropout',
'AddmmBackward': 'InnerProduct',
'BatchNormBackward': 'BatchNorm',
'AddBackward': 'Eltwise',
'ViewBackward': 'Reshape',
'ConcatBackward': 'Concat',
'UpsamplingNearest2d': 'Deconvolution',
'UpsamplingBilinear2d': 'Deconvolution',
'SigmoidBackward': 'Sigmoid',
'LeakyReLUBackward': 'ReLU',
'NegateBackward': 'Power',
'MulBackward': 'Eltwise',
'SpatialCrossMapLRNFunc': 'LRN'}
layer_id = 0
def pytorch2caffe(input_var, output_var, protofile, caffemodel):
global layer_id
net_info = pytorch2prototxt(input_var, output_var)
print_prototxt(net_info)
save_prototxt(net_info, protofile)
if caffemodel is None:
return
net = caffe.Net(protofile, caffe.TEST)
params = net.params
layer_id = 1
seen = set()
def convert_layer(func):
if True:
global layer_id
parent_type = str(type(func).__name__)
if hasattr(func, 'next_functions'):
for u in func.next_functions:
if u[0] is not None:
child_type = str(type(u[0]).__name__)
child_name = child_type + str(layer_id)
if child_type != 'AccumulateGrad' and (
parent_type != 'AddmmBackward' or child_type != 'TransposeBackward'):
if u[0] not in seen:
convert_layer(u[0])
seen.add(u[0])
if child_type != 'ViewBackward':
layer_id = layer_id + 1
parent_name = parent_type + str(layer_id)
print('converting %s' % parent_name)
if parent_type == 'ConvNdBackward':
if func.next_functions[1][0] is not None:
weights = func.next_functions[1][0].variable.data
if func.next_functions[2][0]:
biases = func.next_functions[2][0].variable.data
else:
biases = None
save_conv2caffe(weights, biases, params[parent_name])
elif parent_type == 'BatchNormBackward':
running_mean = func.running_mean
running_var = func.running_var
bn_name = parent_name + "_bn"
save_bn2caffe(running_mean, running_var, params[bn_name])
affine = func.next_functions[1][0] is not None
if affine:
scale_weights = func.next_functions[1][0].variable.data
scale_biases = func.next_functions[2][0].variable.data
scale_name = parent_name + "_scale"
save_scale2caffe(scale_weights, scale_biases, params[scale_name])
elif parent_type == 'AddmmBackward':
biases = func.next_functions[0][0].variable.data
weights = func.next_functions[2][0].next_functions[0][0].variable.data
save_fc2caffe(weights, biases, params[parent_name])
elif parent_type == 'UpsamplingNearest2d':
print('UpsamplingNearest2d')
convert_layer(output_var.grad_fn)
print('save caffemodel to %s' % caffemodel)
net.save(caffemodel)
def save_conv2caffe(weights, biases, conv_param):
if biases is not None:
conv_param[1].data[...] = biases.numpy()
conv_param[0].data[...] = weights.numpy()
def save_fc2caffe(weights, biases, fc_param):
print(biases.size(), weights.size())
print(fc_param[1].data.shape)
print(fc_param[0].data.shape)
fc_param[1].data[...] = biases.numpy()
fc_param[0].data[...] = weights.numpy()
def save_bn2caffe(running_mean, running_var, bn_param):
bn_param[0].data[...] = running_mean.numpy()
bn_param[1].data[...] = running_var.numpy()
bn_param[2].data[...] = np.array([1.0])
def save_scale2caffe(weights, biases, scale_param):
scale_param[1].data[...] = biases.numpy()
scale_param[0].data[...] = weights.numpy()
def pytorch2prototxt(input_var, output_var):
global layer_id
net_info = OrderedDict()
props = OrderedDict()
props['name'] = 'pytorch'
props['input'] = 'data'
props['input_dim'] = input_var.size()
layers = []
layer_id = 1
seen = set()
top_names = dict()
def add_layer(func):
global layer_id
parent_type = str(type(func).__name__)
parent_bottoms = []
if hasattr(func, 'next_functions'):
for u in func.next_functions:
if u[0] is not None:
child_type = str(type(u[0]).__name__)
child_name = child_type + str(layer_id)
if child_type != 'AccumulateGrad' and (
parent_type != 'AddmmBackward' or child_type != 'TransposeBackward'):
if u[0] not in seen:
top_name = add_layer(u[0])
parent_bottoms.append(top_name)
seen.add(u[0])
else:
top_name = top_names[u[0]]
parent_bottoms.append(top_name)
if child_type != 'ViewBackward':
layer_id = layer_id + 1
parent_name = parent_type + str(layer_id)
layer = OrderedDict()
layer['name'] = parent_name
layer['type'] = layer_dict[parent_type]
parent_top = parent_name
if len(parent_bottoms) > 0:
layer['bottom'] = parent_bottoms
else:
layer['bottom'] = ['data']
layer['top'] = parent_top
if parent_type == 'MulBackward':
eltwise_param = {
'operation': 'PROD',
}
layer['eltwise_param'] = eltwise_param
elif parent_type == 'NegateBackward':
power_param = {
'power': 1,
'scale': -1.,
'shift': 0
}
layer['power_param'] = power_param
elif parent_type == 'LeakyReLUBackward':
negative_slope = func.additional_args[0]
layer['relu_param'] = {'negative_slope': negative_slope}
elif parent_type == 'UpsamplingNearest2d':
conv_param = OrderedDict()
factor = func.scale_factor
conv_param['num_output'] = func.saved_tensors[0].size(1)
conv_param['group'] = conv_param['num_output']
conv_param['kernel_size'] = (2 * factor - factor % 2)
conv_param['stride'] = factor
conv_param['pad'] = int(np.ceil((factor - 1) / 2.))
conv_param['weight_filler'] = {'type': 'bilinear'}
conv_param['bias_term'] = 'false'
layer['convolution_param'] = conv_param
layer['param'] = {'lr_mult': 0, 'decay_mult': 0}
elif parent_type == 'UpsamplingBilinear2d':
conv_param = OrderedDict()
factor = func.scale_factor[0]
conv_param['num_output'] = func.input_size[1]
conv_param['group'] = conv_param['num_output']
conv_param['kernel_size'] = (2 * factor - factor % 2)
conv_param['stride'] = factor
conv_param['pad'] = int(np.ceil((factor - 1) / 2.))
conv_param['weight_filler'] = {'type': 'bilinear'}
conv_param['bias_term'] = 'false'
layer['convolution_param'] = conv_param
layer['param'] = {'lr_mult': 0, 'decay_mult': 0}
elif parent_type == 'ConcatBackward':
concat_param = OrderedDict()
concat_param['axis'] = func.dim
layer['concat_param'] = concat_param
elif parent_type == 'ConvNdBackward':
# Only for UpsamplingCaffe
if func.transposed is True and func.next_functions[1][0] is None:
layer['type'] = layer_dict['UpsamplingBilinear2d']
conv_param = OrderedDict()
factor = func.stride[0]
conv_param['num_output'] = func.next_functions[0][0].saved_tensors[0].size(1)
conv_param['group'] = conv_param['num_output']
conv_param['kernel_size'] = (2 * factor - factor % 2)
conv_param['stride'] = factor
conv_param['pad'] = int(np.ceil((factor - 1) / 2.))
conv_param['weight_filler'] = {'type': 'bilinear'}
conv_param['bias_term'] = 'false'
layer['convolution_param'] = conv_param
layer['param'] = {'lr_mult': 0, 'decay_mult': 0}
else:
weights = func.next_functions[1][0].variable
conv_param = OrderedDict()
conv_param['num_output'] = weights.size(0)
conv_param['pad_h'] = func.padding[0]
conv_param['pad_w'] = func.padding[1]
conv_param['kernel_h'] = weights.size(2)
conv_param['kernel_w'] = weights.size(3)
conv_param['stride'] = func.stride[0]
conv_param['dilation'] = func.dilation[0]
if func.next_functions[2][0] == None:
conv_param['bias_term'] = 'false'
layer['convolution_param'] = conv_param
elif parent_type == 'BatchNormBackward':
bn_layer = OrderedDict()
bn_layer['name'] = parent_name + "_bn"
bn_layer['type'] = 'BatchNorm'
bn_layer['bottom'] = parent_bottoms
bn_layer['top'] = parent_top
batch_norm_param = OrderedDict()
batch_norm_param['use_global_stats'] = 'true'
batch_norm_param['eps'] = func.eps
bn_layer['batch_norm_param'] = batch_norm_param
affine = func.next_functions[1][0] is not None
# func.next_functions[1][0].variable.data
if affine:
scale_layer = OrderedDict()
scale_layer['name'] = parent_name + "_scale"
scale_layer['type'] = 'Scale'
scale_layer['bottom'] = parent_top
scale_layer['top'] = parent_top
scale_param = OrderedDict()
scale_param['bias_term'] = 'true'
scale_layer['scale_param'] = scale_param
else:
scale_layer = None
elif parent_type == 'ThresholdBackward':
parent_top = parent_bottoms[0]
elif parent_type == 'MaxPool2dBackward':
pooling_param = OrderedDict()
pooling_param['pool'] = 'MAX'
pooling_param['kernel_size'] = func.kernel_size[0]
pooling_param['stride'] = func.stride[0]
# http://netaz.blogspot.com/2016/08/confused-about-caffes-pooling-layer.html
padding = func.padding[0]
# padding = 0 if func.padding[0] in {0, 1} else func.padding[0]
pooling_param['pad'] = padding
layer['pooling_param'] = pooling_param
elif parent_type == 'AvgPool2dBackward':
pooling_param = OrderedDict()
pooling_param['pool'] = 'AVE'
pooling_param['kernel_size'] = func.kernel_size[0]
pooling_param['stride'] = func.stride[0]
pooling_param['pad'] = func.padding[0]
layer['pooling_param'] = pooling_param
elif parent_type == 'DropoutBackward':
parent_top = parent_bottoms[0]
dropout_param = OrderedDict()
dropout_param['dropout_ratio'] = func.p
layer['dropout_param'] = dropout_param
elif parent_type == 'AddmmBackward':
inner_product_param = OrderedDict()
inner_product_param['num_output'] = func.next_functions[0][0].variable.size(0)
layer['inner_product_param'] = inner_product_param
elif parent_type == 'ViewBackward':
parent_top = parent_bottoms[0]
elif parent_type == 'AddBackward':
eltwise_param = OrderedDict()
eltwise_param['operation'] = 'SUM'
layer['eltwise_param'] = eltwise_param
elif parent_type == 'SpatialCrossMapLRNFunc':
layer['lrn_param'] = {
'local_size': func.size,
'alpha': func.alpha,
'beta': func.beta,
}
layer['top'] = parent_top # reset layer['top'] as parent_top may change
if parent_type != 'ViewBackward':
if parent_type == "BatchNormBackward":
layers.append(bn_layer)
if scale_layer is not None:
layers.append(scale_layer)
else:
layers.append(layer)
# layer_id = layer_id + 1
top_names[func] = parent_top
return parent_top
add_layer(output_var.grad_fn)
net_info['props'] = props
net_info['layers'] = layers
return net_info
def plot_graph(top_var, fname, params=None):
"""
This method don't support release v0.1.12 caused by a bug fixed in: https://github.com/pytorch/pytorch/pull/1016
So if you want to use `plot_graph`, you have to build from master branch or wait for next release.
Plot the graph. Make sure that require_grad=True and volatile=False
:param top_var: network output Varibale
:param fname: file name
:param params: dict of (name, Variable) to add names to node that
:return: png filename
"""
from graphviz import Digraph
import pydot
dot = Digraph(comment='LRP',
node_attr={'style': 'filled', 'shape': 'box'})
# , 'fillcolor': 'lightblue'})
seen = set()
if params is not None:
assert isinstance(params.values()[0], Variable)
param_map = {id(v): k for k, v in params.items()}
def size_to_str(size):
return '(' + (', ').join(['%d' % v for v in size]) + ')'
def add_nodes(var):
if var not in seen:
if torch.is_tensor(var):
dot.node(str(id(var)), size_to_str(var.size()), fillcolor='orange')
elif hasattr(var, 'variable'):
u = var.variable
name = '{}\n '.format(param_map[id(u)]) if params is not None else ''
node_name = '{}{}'.format(name, size_to_str(u.size()))
dot.node(str(id(var)), node_name, fillcolor='lightblue')
else:
dot.node(str(id(var)), str(type(var).__name__))
seen.add(var)
if hasattr(var, 'next_functions'):
for u in var.next_functions:
if u[0] is not None:
dot.edge(str(id(u[0])), str(id(var)))
add_nodes(u[0])
if hasattr(var, 'saved_tensors'):
for t in var.saved_tensors:
dot.edge(str(id(t)), str(id(var)))
add_nodes(t)
add_nodes(top_var.grad_fn)
dot.save(fname)
(graph,) = pydot.graph_from_dot_file(fname)
im_name = '{}.png'.format(fname)
graph.write_png(im_name)
print(im_name)
return im_name
if __name__ == '__main__':
import torchvision
import os
m = torchvision.models.inception_v3(pretrained=True, transform_input=False)
m.eval()
print(m)
input_var = Variable(torch.rand(1, 3, 299, 299))
output_var = m(input_var)
# plot graph to png
output_dir = 'demo'
plot_graph(output_var, os.path.join(output_dir, 'inception_v3.dot'))
pytorch2caffe(input_var, output_var, os.path.join(output_dir, 'inception_v3-pytorch2caffe.prototxt'),
os.path.join(output_dir, 'inception_v3-pytorch2caffe.caffemodel'))