-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodule.py
132 lines (103 loc) · 4.3 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import tensorflow as tf
import tensorflow_addons as tfa
import tensorflow.keras as keras
# ==============================================================================
# = networks =
# ==============================================================================
def _get_norm_layer(norm):
if norm == 'none':
return lambda: lambda x: x
elif norm == 'batch_norm':
return keras.layers.BatchNormalization
elif norm == 'instance_norm':
return tfa.layers.InstanceNormalization
elif norm == 'layer_norm':
return keras.layers.LayerNormalization
def ResnetGenerator(input_shape=(256, 256, 3),
output_channels=3,
dim=64,
n_downsamplings=2,
n_blocks=9,
norm='instance_norm'):
Norm = _get_norm_layer(norm)
def _residual_block(x):
dim = x.shape[-1]
h = x
h = tf.pad(h, [[0, 0], [1, 1], [1, 1], [0, 0]], mode='REFLECT')
h = keras.layers.Conv2D(dim, 3, padding='valid', use_bias=False)(h)
h = Norm()(h)
h = tf.nn.relu(h)
h = tf.pad(h, [[0, 0], [1, 1], [1, 1], [0, 0]], mode='REFLECT')
h = keras.layers.Conv2D(dim, 3, padding='valid', use_bias=False)(h)
h = Norm()(h)
return keras.layers.add([x, h])
# 0
h = inputs = keras.Input(shape=input_shape)
# 1
h = tf.pad(h, [[0, 0], [3, 3], [3, 3], [0, 0]], mode='REFLECT')
h = keras.layers.Conv2D(dim, 7, padding='valid', use_bias=False)(h)
h = Norm()(h)
h = tf.nn.relu(h)
# 2
for _ in range(n_downsamplings):
dim *= 2
h = keras.layers.Conv2D(dim, 3, strides=2, padding='same', use_bias=False)(h)
h = Norm()(h)
h = tf.nn.relu(h)
# 3
for _ in range(n_blocks):
h = _residual_block(h)
# 4
for _ in range(n_downsamplings):
dim //= 2
h = keras.layers.Conv2DTranspose(dim, 3, strides=2, padding='same', use_bias=False)(h)
h = Norm()(h)
h = tf.nn.relu(h)
# 5
h = tf.pad(h, [[0, 0], [3, 3], [3, 3], [0, 0]], mode='REFLECT')
h = keras.layers.Conv2D(output_channels, 7, padding='valid')(h)
h = tf.tanh(h)
return keras.Model(inputs=inputs, outputs=h)
def ConvDiscriminator(input_shape=(256, 256, 3),
dim=64,
n_downsamplings=3,
norm='instance_norm'):
dim_ = dim
Norm = _get_norm_layer(norm)
# 0
h = inputs = keras.Input(shape=input_shape)
# 1
h = keras.layers.Conv2D(dim, 4, strides=2, padding='same')(h)
h = tf.nn.leaky_relu(h, alpha=0.2)
for _ in range(n_downsamplings - 1):
dim = min(dim * 2, dim_ * 8)
h = keras.layers.Conv2D(dim, 4, strides=2, padding='same', use_bias=False)(h)
h = Norm()(h)
h = tf.nn.leaky_relu(h, alpha=0.2)
# 2
dim = min(dim * 2, dim_ * 8)
h = keras.layers.Conv2D(dim, 4, strides=1, padding='same', use_bias=False)(h)
h = Norm()(h)
h = tf.nn.leaky_relu(h, alpha=0.2)
# 3
h = keras.layers.Conv2D(1, 4, strides=1, padding='same')(h)
return keras.Model(inputs=inputs, outputs=h)
# ==============================================================================
# = learning rate scheduler =
# ==============================================================================
class LinearDecay(keras.optimizers.schedules.LearningRateSchedule):
# if `step` < `step_decay`: use fixed learning rate
# else: linearly decay the learning rate to zero
def __init__(self, initial_learning_rate, total_steps, step_decay):
super(LinearDecay, self).__init__()
self._initial_learning_rate = initial_learning_rate
self._steps = total_steps
self._step_decay = step_decay
self.current_learning_rate = tf.Variable(initial_value=initial_learning_rate, trainable=False, dtype=tf.float32)
def __call__(self, step):
self.current_learning_rate.assign(tf.cond(
step >= self._step_decay,
true_fn=lambda: self._initial_learning_rate * (1 - 1 / (self._steps - self._step_decay) * (step - self._step_decay)),
false_fn=lambda: self._initial_learning_rate
))
return self.current_learning_rate