-
Notifications
You must be signed in to change notification settings - Fork 159
/
Copy pathNSGA II.py
155 lines (140 loc) · 5.85 KB
/
NSGA II.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Program Name: NSGA-II.py
# Description: This is a python implementation of Prof. Kalyanmoy Deb's popular NSGA-II algorithm
# Author: Haris Ali Khan
# Supervisor: Prof. Manoj Kumar Tiwari
#Importing required modules
import math
import random
import matplotlib.pyplot as plt
#First function to optimize
def function1(x):
value = -x**2
return value
#Second function to optimize
def function2(x):
value = -(x-2)**2
return value
#Function to find index of list
def index_of(a,list):
for i in range(0,len(list)):
if list[i] == a:
return i
return -1
#Function to sort by values
def sort_by_values(list1, values):
sorted_list = []
while(len(sorted_list)!=len(list1)):
if index_of(min(values),values) in list1:
sorted_list.append(index_of(min(values),values))
values[index_of(min(values),values)] = math.inf
return sorted_list
#Function to carry out NSGA-II's fast non dominated sort
def fast_non_dominated_sort(values1, values2):
S=[[] for i in range(0,len(values1))]
front = [[]]
n=[0 for i in range(0,len(values1))]
rank = [0 for i in range(0, len(values1))]
for p in range(0,len(values1)):
S[p]=[]
n[p]=0
for q in range(0, len(values1)):
if (values1[p] > values1[q] and values2[p] > values2[q]) or (values1[p] >= values1[q] and values2[p] > values2[q]) or (values1[p] > values1[q] and values2[p] >= values2[q]):
if q not in S[p]:
S[p].append(q)
elif (values1[q] > values1[p] and values2[q] > values2[p]) or (values1[q] >= values1[p] and values2[q] > values2[p]) or (values1[q] > values1[p] and values2[q] >= values2[p]):
n[p] = n[p] + 1
if n[p]==0:
rank[p] = 0
if p not in front[0]:
front[0].append(p)
i = 0
while(front[i] != []):
Q=[]
for p in front[i]:
for q in S[p]:
n[q] =n[q] - 1
if( n[q]==0):
rank[q]=i+1
if q not in Q:
Q.append(q)
i = i+1
front.append(Q)
del front[len(front)-1]
return front
#Function to calculate crowding distance
def crowding_distance(values1, values2, front):
distance = [0 for i in range(0,len(front))]
sorted1 = sort_by_values(front, values1[:])
sorted2 = sort_by_values(front, values2[:])
distance[0] = 4444444444444444
distance[len(front) - 1] = 4444444444444444
for k in range(1,len(front)-1):
distance[k] = distance[k]+ (values1[sorted1[k+1]] - values2[sorted1[k-1]])/(max(values1)-min(values1))
for k in range(1,len(front)-1):
distance[k] = distance[k]+ (values1[sorted2[k+1]] - values2[sorted2[k-1]])/(max(values2)-min(values2))
return distance
#Function to carry out the crossover
def crossover(a,b):
r=random.random()
if r>0.5:
return mutation((a+b)/2)
else:
return mutation((a-b)/2)
#Function to carry out the mutation operator
def mutation(solution):
mutation_prob = random.random()
if mutation_prob <1:
solution = min_x+(max_x-min_x)*random.random()
return solution
#Main program starts here
pop_size = 20
max_gen = 921
#Initialization
min_x=-55
max_x=55
solution=[min_x+(max_x-min_x)*random.random() for i in range(0,pop_size)]
gen_no=0
while(gen_no<max_gen):
function1_values = [function1(solution[i])for i in range(0,pop_size)]
function2_values = [function2(solution[i])for i in range(0,pop_size)]
non_dominated_sorted_solution = fast_non_dominated_sort(function1_values[:],function2_values[:])
print("The best front for Generation number ",gen_no, " is")
for valuez in non_dominated_sorted_solution[0]:
print(round(solution[valuez],3),end=" ")
print("\n")
crowding_distance_values=[]
for i in range(0,len(non_dominated_sorted_solution)):
crowding_distance_values.append(crowding_distance(function1_values[:],function2_values[:],non_dominated_sorted_solution[i][:]))
solution2 = solution[:]
#Generating offsprings
while(len(solution2)!=2*pop_size):
a1 = random.randint(0,pop_size-1)
b1 = random.randint(0,pop_size-1)
solution2.append(crossover(solution[a1],solution[b1]))
function1_values2 = [function1(solution2[i])for i in range(0,2*pop_size)]
function2_values2 = [function2(solution2[i])for i in range(0,2*pop_size)]
non_dominated_sorted_solution2 = fast_non_dominated_sort(function1_values2[:],function2_values2[:])
crowding_distance_values2=[]
for i in range(0,len(non_dominated_sorted_solution2)):
crowding_distance_values2.append(crowding_distance(function1_values2[:],function2_values2[:],non_dominated_sorted_solution2[i][:]))
new_solution= []
for i in range(0,len(non_dominated_sorted_solution2)):
non_dominated_sorted_solution2_1 = [index_of(non_dominated_sorted_solution2[i][j],non_dominated_sorted_solution2[i] ) for j in range(0,len(non_dominated_sorted_solution2[i]))]
front22 = sort_by_values(non_dominated_sorted_solution2_1[:], crowding_distance_values2[i][:])
front = [non_dominated_sorted_solution2[i][front22[j]] for j in range(0,len(non_dominated_sorted_solution2[i]))]
front.reverse()
for value in front:
new_solution.append(value)
if(len(new_solution)==pop_size):
break
if (len(new_solution) == pop_size):
break
solution = [solution2[i] for i in new_solution]
gen_no = gen_no + 1
#Lets plot the final front now
function1 = [i * -1 for i in function1_values]
function2 = [j * -1 for j in function2_values]
plt.xlabel('Function 1', fontsize=15)
plt.ylabel('Function 2', fontsize=15)
plt.scatter(function1, function2)
plt.show()