forked from rhythmswing/Fair-Representation-Learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dumb_containers.py
281 lines (235 loc) · 10.4 KB
/
dumb_containers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import pandas as pd
import numpy as np
import csv
from sklearn.metrics import roc_curve, auc
import random
import matplotlib.pyplot as plt
import pylab as plb
import pdb
# import cPickle
# split data
# df -- dataframe
# split -- ratio to split out float (0, 1)
# seed -- random seed to use
def split_data(df, split, seed=1):
random.seed(seed)
rows = random.sample(df.index, int(round(split * (df.shape[0]))))
df_split = df.ix[rows]
df_remaining = df.drop(rows)
return df_split, df_remaining, rows
def hump_variable(df, variable, split_pt):
inds1 = df[variable] <= split_pt
inds2 = df[variable] > split_pt
df[variable + '_1'] = np.zeros(df.shape[0])
df[variable + '_2'] = np.zeros(df.shape[0])
df[variable + '_3'] = np.zeros(df.shape[0])
df[variable + '_1'][inds1] = split_pt - df[variable][inds1]
df[variable + '_2'][inds2] = df[variable][inds2] - split_pt
df[variable + '_3'][inds1] = 1.0
return df
# Turn a categorical series to a few columns of dummy variables
# each unique value will be a separate column
#
# s - a data series
def get_dummies_column(s):
vc = s.value_counts()
names = vc.index
length = vc.values.shape[0]
# print names
column_name = s.name;
row_num = s.shape[0]
# print row_num
data = np.zeros((row_num, length))
column_names = [''] * (length)
for i in xrange(length):
column_names[i] = column_name + '_' + names[i]
data[:, i] = (s == names[i]).astype(int)
return pd.DataFrame(data, s.index, columns=column_names)
# Turn a list of categorical series to dummy series, append them,
def process_dummies(data, columns):
df = data;
for i in xrange(len(columns)):
column = columns[i]
df[column] = df[column].astype(str)
dummy_series = get_dummies_column(df[column])
df = pd.concat([df, dummy_series], axis=1)
return df
# clean up, floor values to 2*p99 by default
def treat_floor(df, names):
for name in names:
temp = df[name].quantile(0.99)
if temp >= 0:
df[name] = np.minimum(2.0 * temp, df[name])
else:
df[name] = np.minimum(0.5 * temp, df[name])
return df
# clean up, ceiling values to p1*2 by default
def treat_ceiling(df, names):
for name in names:
temp = df[name].quantile(0.01)
if temp > 0:
df[name] = np.maximum(temp * 0.5, df[name])
else:
df[name] = np.maximum(temp * 2.0, df[name])
return df
# Evaluate output of a logit
# Plot appropriate figures: KS/AUC, score distribution/average score
def evaluate_performance(all_target, predicted, toplot=True, verbose=False):
fpr, tpr, thresholds = roc_curve(all_target, predicted)
roc_auc = auc(fpr, tpr)
ks = max(tpr - fpr)
maxind = plb.find(tpr - fpr == ks)
event_rate = sum(all_target) / 1.0 / all_target.shape[0]
cum_total = tpr * event_rate + fpr * (1 - event_rate)
minind = plb.find(abs(cum_total - event_rate) == min(abs(cum_total - event_rate)))
if minind.shape[0] > 0:
minind = minind[0]
if verbose == True:
print ('KS=' + str(np.round(ks, 2)) + ', AUC=' + str(np.round(roc_auc, 2)) + ', N=' + str(predicted.shape[0]))
print (
'At threshold=' + str(np.round(thresholds[maxind], 3)) + ', TPR=' + str(np.round(tpr[maxind], 2)) + ', ' + str(
int(np.round(tpr[maxind] * event_rate * all_target.shape[0]))) + ' out of ' + str(
int(np.round(event_rate * all_target.shape[0]))))
print (
'At threshold=' + str(np.round(thresholds[maxind], 3)) + ', FPR=' + str(np.round(fpr[maxind], 2)) + ', ' + str(
int(np.round(fpr[maxind] * (1.0 - event_rate) * all_target.shape[0]))) + ' out of ' + str(
int(np.round((1.0 - event_rate) * all_target.shape[0]))))
recall_ = tpr[maxind] * event_rate * all_target.shape[0] * 1.0 / (event_rate * all_target.shape[0])
if verbose == True:
print ('recall= ' + str(np.round(recall_, 2)))
precision_ = tpr[maxind] * event_rate * all_target.shape[0] * 1.0 / (
tpr[maxind] * event_rate * all_target.shape[0] * 1.0 + fpr[maxind] * (1.0 - event_rate) * all_target.shape[
0])
print ('precision= ' + str(np.round(precision_, 2)))
f1_score = 2 / (1 / recall_ + 1 / precision_)
print ('f1_score= ' + str(np.round(f1_score, 2)))
if toplot:
# KS plot
plt.figure(figsize=(20, 6))
plt.subplot(1, 3, 1)
plt.plot(fpr, tpr)
plt.hold
plt.plot([0, 1], [0, 1], color='k', linestyle='--', linewidth=2)
plt.title('KS=' + str(np.round(ks, 2)) + ' AUC=' + str(np.round(roc_auc, 2)), fontsize=20)
plt.plot([fpr[maxind], fpr[maxind]], [fpr[maxind], tpr[maxind]], linewidth=4, color='r')
plt.plot([fpr[minind]], [tpr[minind]], 'k.', markersize=10)
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.xlabel('False positive', fontsize=20);
plt.ylabel('True positive', fontsize=20);
# print ('At threshold=' + str(round(event_rate, 3)))
# print (str(round(fpr[minind],2)))
# print (str(int(round(fpr[minind]*(1.0-event_rate)*all_target.shape[0]))))
# print (str(int(round((1.0-event_rate)*all_target.shape[0]))))
# Score distribution score
plt.subplot(1, 3, 2)
# print predicted.columns
plt.hist(predicted, bins=20)
plt.hold
plt.axvline(x=np.mean(predicted), linestyle='--')
plt.axvline(x=np.mean(all_target), linestyle='--', color='g')
plt.title('N=' + str(all_target.shape[0]) + ' Tru=' + str(np.round(np.mean(all_target), 3)) + ' Pred=' + str(
np.round(np.mean(predicted), 3)), fontsize=20)
plt.xlabel('Target rate', fontsize=20)
plt.ylabel('Count', fontsize=20)
# Score average by percentile
binnum = 10
ave_predict = np.zeros((binnum))
ave_target = np.zeros((binnum))
indices = np.argsort(predicted)
binsize = int(np.round(predicted.shape[0] / 1.0 / binnum))
for i in range(binnum):
startind = i * binsize
endind = min(predicted.shape[0], (i + 1) * binsize)
ave_predict[i] = np.mean(predicted[indices[startind:endind]])
ave_target[i] = np.mean(all_target[indices[startind:endind]])
plt.subplot(1, 3, 3)
plt.plot(ave_predict, 'b.-', label='Prediction', markersize=5)
plt.hold
plt.plot(ave_target, 'r.-', label='Truth', markersize=5)
plt.legend(loc='lower right')
plt.xlabel('Percentile', fontsize=20)
plt.ylabel('Target rate', fontsize=20)
print ('Ave_target: ' + str(ave_target))
print ('Ave_predicted: ' + str(ave_predict))
return np.round(ks, 2), np.round(roc_auc, 2)
def evaluate_performance_sim(all_target, predicted, P_label=None, more_eva=0):
# type: (object, object) -> object
fpr, tpr, thresholds = roc_curve(all_target, predicted)
roc_auc = auc(fpr, tpr)
ks = max(tpr - fpr)
maxind = plb.find(tpr - fpr == ks)
thres = np.round(thresholds[maxind], 3)
event_rate = sum(all_target) / 1.0 / all_target.shape[0]
cum_total = tpr * event_rate + fpr * (1 - event_rate)
recall_ = tpr[maxind] * event_rate * all_target.shape[0] * 1.0 / (event_rate * all_target.shape[0])
precision_ = tpr[maxind] * event_rate * all_target.shape[0] * 1.0 / (
tpr[maxind] * event_rate * all_target.shape[0] * 1.0 + fpr[maxind] * (1.0 - event_rate) * all_target.shape[0])
f1_score = 2 / (1 / recall_ + 1 / precision_)
if more_eva == 1:
if P_label is not None:
stat_parity_dev = max(sum(predicted[P_label == 0]) / sum(P_label == 0),
(sum(predicted[P_label == 1]) / sum(P_label == 1))) / min(
sum(predicted[P_label == 0]) / sum(P_label == 0), (sum(predicted[P_label == 1]) / sum(P_label == 1)))
stat_parity_sub = abs(
sum(predicted[P_label == 0]) / sum(P_label == 0) - sum(predicted[P_label == 1]) / sum(P_label == 1))
# print stat_parity
return np.round(ks, 4), np.round(recall_, 4)[0], np.round(precision_, 4)[0], np.round(f1_score, 4)[
0], np.round(stat_parity_dev, 4), np.round(stat_parity_sub, 4), np.round(thres, 3)
else:
return np.round(ks, 4), np.round(recall_, 4)[0], np.round(precision_, 4)[0], np.round(f1_score, 4)[0]
else:
if P_label is not None:
stat_parity = max(sum(predicted[P_label == 0]) / sum(P_label == 0),
(sum(predicted[P_label == 1]) / sum(P_label == 1))) / min(
sum(predicted[P_label == 0]) / sum(P_label == 0), (sum(predicted[P_label == 1]) / sum(P_label == 1)))
return np.round(ks, 2), np.round(recall_, 2)[0], np.round(precision_, 2)[0], np.round(f1_score, 2)[
0], np.round(stat_parity, 4)
else:
return np.round(ks, 2), np.round(recall_, 2)[0], np.round(precision_, 2)[0], np.round(f1_score, 2)[0]
# Get header row of a file
def get_header(fi):
f = open(fi, 'r')
g = csv.reader(f)
head = g.next()
head = [x.replace('\xef\xbb\xbf', '') for x in head]
f.close()
return head
# Get string for columns to keep to pass to awk
def get_column_string(header, columns):
ss = '$' + str(header.index(columns[0]) + 1)
for i in range(1, len(columns)):
ss = ss + ',$' + str(header.index(columns[i]) + 1)
return ss
# get dataframe that correspond to a unique field
def get_data(g, currentrow, header, fieldtomatch, tomatch):
if len(currentrow) == 0:
return [], []
index = header.index(fieldtomatch)
if currentrow[index] > tomatch:
return [], currentrow
elif currentrow[index] < tomatch:
while True:
try:
row = g.next()
currentrow = row
if row[index] > tomatch:
return [], currentrow
elif row[index] == tomatch:
break
except StopIteration:
return [], []
rows = [currentrow]
while True:
try:
row = g.next()
if row[index] == tomatch:
rows.append(row)
else:
return pd.DataFrame(rows, columns=header), row
except StopIteration:
return pd.DataFrame(rows, columns=header), []
# # save an object to a file
# def save_object(obj, filename):
# with open(filename, 'wb') as output:
# cPickle.dump(obj, output, -1)