-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathproject.py
80 lines (58 loc) · 2.46 KB
/
project.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import sys
import re
import subprocess
import shlex
import numpy as np
import argparse
tmpOutput = open('tmp.txt', 'w')
def GetNgrams(text, countOfWords, step):
text = text.strip()
splittedText = text.split(' ')
space = ' '
ngrams = [space.join(splittedText[i : i + countOfWords]) for i in range(0, len(splittedText) - 1, step)]
return ngrams
def GetMisclassifiedData(labeledData, modelPath, testPath):
labels = re.findall('__label__[1-9]{1,}', labeledData)
rows = filter(None, re.split('__label__[1-9]{1,}', labeledData))
command = shlex.split("../fastText/fastText-0.1.0/./fasttext predict-prob " + modelPath + " " + testPath)
process = subprocess.Popen(command, stdout=subprocess.PIPE)
output, err = process.communicate()
receivedLabels = re.findall('__label__[1-9]{1,}', output)
print len(labels), len(receivedLabels)
labels = np.array(labels)
receivedLabels = np.array(receivedLabels)
differences = [i != j for i, j in zip(labels, receivedLabels)]
differences = np.array(differences, dtype = np.uint8)
return [rows[i] for i in np.nonzero(differences)[0]], [labels[i] for i in np.nonzero(differences)[0]]
def AddMisclassifiedNGrams(data, labels, countOfWords, step):
global tmpOutput
for i in range(len(data)):
tmpOutput.write(str(labels[i]) + data[i].strip() + '\n')
nGrams = GetNgrams(data[i].strip(), countOfWords, step)
for nGram in nGrams:
tmpOutput.write(str(labels[i]) + nGram + '\n')
tmpOutput.close()
return
parser = argparse.ArgumentParser()
parser.add_argument('--testPath', help = 'Path of test data')
parser.add_argument('--modelPath', help = 'Path of trained model')
parser.add_argument('--output', help = 'Output file')
parser.add_argument('--countOfWords', help = 'Count of words in test sentence')
parser.add_argument('--step', help = 'Step for taking words in test sentence')
parsedArgs = parser.parse_args()
testPath = parsedArgs.testPath
modelPath = parsedArgs.modelPath
output = parsedArgs.output
countOfWords = int(parsedArgs.countOfWords)
step = int(parsedArgs.step)
outputFile = open(output, 'w')
testFile = open(testPath, 'r')
testData = testFile.read()
wrongDataRows, wrongDataLabels = GetMisclassifiedData(testData, modelPath, testPath)
AddMisclassifiedNGrams(wrongDataRows, wrongDataLabels, countOfWords, step)
tmp = open('tmp.txt', 'r')
tmp = tmp.read()
result, resultLabels = GetMisclassifiedData(tmp, modelPath, 'tmp.txt')
for res, label in zip(result, resultLabels):
outputFile.write(str(label) + res)
outputFile.close()