hayatkhan8660-maker
/
Cascaded-Deep-Reinforcement-Learning-Based-Multi-Revolution-Low-Thrust-Spacecraft-Orbit-Transfer
Public
forked from talhazaidi13/Cascaded-Deep-Reinforcement-Learning-Based-Multi-Revolution-Low-Thrust-Spacecraft-Orbit-Transfer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
45 lines (38 loc) · 1.15 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import stable_baselines3
from stable_baselines3 import SAC
from stable_baselines3.common.env_util import make_vec_env
import os
from Spacecraft_Env import Spacecraft_Env
import time
#from enviornment import Enviornment
import numpy as np
import tensorflow as tf
import os.path
import time
from datetime import date
from config import args
from scenerios import cases
tf.debugging.set_log_device_placement(True)
import argparse
from config import args
chosen_case = cases[args.case]
model_path = chosen_case['weights_path'][0]
current_dir = os.getcwd()
models_dir = os.path.join(current_dir , model_path)
env = Spacecraft_Env(args)
env.reset()
model = SAC.load(model_path, env =env )
episodes = args.max_nu_ep
with tf.device('/GPU:0'):
for ep in range (episodes):
obs = env.reset()
done = False
steps = 0
model = SAC.load(model_path, env =env )
while not done:
steps = steps + 1
# print("Step {}".format(steps))
action = model.predict(obs)
obs, reward, done, info = env.step(action[0])
env.close()
print("All EPISODES DONE ! ")