-
Notifications
You must be signed in to change notification settings - Fork 0
/
simulate_dual_stacks_rv.py
463 lines (371 loc) · 16.4 KB
/
simulate_dual_stacks_rv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
import sys, os, glob, argparse, resource
import math, time
import multiprocessing as mp
import shutil
import pickle
import numpy as n
import numpy.fft as fourier
sys.path.append('cryoem/')
sys.path.append('cryoem/util')
from cryoem.cryoio import ctf, mrc
from cryoem.util import format_timedelta
from cryoem import cryoem, geom, cryoops, density, sincint
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
# For parallel https://stackoverflow.com/questions/15639779/why-does-multiprocessing-use-only-a-single-core-after-i-import-numpy
os.environ["OPENBLAS_MAIN_FREE"] = "1"
# Set the files open limit (must exceed the simulation chunk size)
resource.setrlimit(resource.RLIMIT_NOFILE, (1100, 1100))
# matplotlib configuration
mpl.rcParams['figure.dpi'] = 100
plt.style.use(['dark_background'])
def main(args):
# Create the output directory
if not os.path.exists(args.output_path):
os.mkdir(args.output_path)
else:
proceed = False
if args.overwrite:
proceed = True
else:
proceed = query_yes_no('Output path exists. Overwrite?')
if proceed:
shutil.rmtree(args.output_path)
os.mkdir(args.output_path)
else:
print('Cancelled.')
return
# setup microscope and ctf parameters
params = {}
params['defocus_min'] = 10000
params['defocus_max'] = 20000
params['defocus_ang_min'] = 0
params['defocus_ang_max'] = 360
params['accel_kv'] = 300
params['amp_contrast'] = 0.07
params['phase_shift'] = 0
params['spherical_abberr'] = 2.7
params['mag'] = 10000.0
scale = 1
# particle parameters
params['n_particles'] = args.n_particles
# miscellaneous parameters
params['kernel'] = 'lanczos'
params['ksize'] = int(6)
params['rad'] = 0.95
params['shift_sigma'] = 0
params['bfactor'] = 50.0
# particle noise intensity
params['sigma_noise'] = args.sigma_noise
print('Using specified sigma_noise: ' + str(params['sigma_noise']))
# handle multiple input volumes
multiVolume = False
if args.input_wt_volumes != []:
print("Validating parameters for multi-volume simulation.")
assert len(args.input_wt_volumes) == len(args.input_temet_volumes), "You must specify the same number of wt and temet input volumes."
assert len(args.volume_weights) == 0 or len(args.volume_weights) == len(args.input_wt_volumes), "You must specify as many weights as volume pairs."
print("Conducting multi-volume simulation.")
multiVolume = True
# For single volume runs
V_wt = None
V_temet = None
if multiVolume:
volumePairs = []
volumeWeights = None
if len(args.volume_weights) == 0:
volumeWeights = [1/len(args.input_wt_volumes) for i in range(len(args.input_wt_volumes))]
else:
volumeWeights = args.volume_weights
volumeWeights = [x/sum(volumeWeights) for x in volumeWeights]
print("Using volume weights: " + str(volumeWeights))
print('Volume metadata will be read from the first WT volume.')
for i, value in enumerate(zip(args.input_wt_volumes, args.input_temet_volumes)):
v1, boxSize, pxSize = readVolume(value[0])
v2, b, s = readVolume(value[1])
if i == 0:
# Set the global meta variables
params['boxSize'] = boxSize
params['pxSize'] = pxSize
params['wt_signal_mean'] = signalMean(v1)
params['temet_signal_mean'] = signalMean(v2)
volumePairs.append([v1, v2])
else:
print("Conducting single volume simulation.")
# Read the volume data and compute fft
print('Volume metadata will be read from the WT volume.')
vol_wt,hdr_wt = mrc.readMRC(args.input_wt, inc_header=True)
vol_temet,hdr_temet = mrc.readMRC(args.input_temet, inc_header=True)
params['boxSize'] = int(vol_wt.shape[0])
params['pxSize'] = (hdr_wt['xlen']/hdr_wt['nx'])
premult = cryoops.compute_premultiplier(params['boxSize'], params['kernel'], params['ksize'])
V_wt = density.real_to_fspace(premult.reshape((1,1,-1)) * premult.reshape((1,-1,1)) * premult.reshape((-1,1,1)) * vol_wt)
V_temet = density.real_to_fspace(premult.reshape((1,1,-1)) * premult.reshape((1,-1,1)) * premult.reshape((-1,1,1)) * vol_temet)
params['wt_signal_mean'] = signalMean(vol_wt)
params['temet_signal_mean'] = signalMean(vol_temet)
params['wt_snr'] = params['wt_signal_mean']/params['sigma_noise']
params['temet_snr'] = params['temet_signal_mean']/params['sigma_noise']
TtoF = sincint.gentrunctofull(N=params['boxSize'], rad=params['rad'])
# Get ready to simulate the particles
tic = time.time()
nChunks = math.ceil(params['n_particles'] / 1000)
lastChunkSize = params['n_particles'] - ((nChunks - 1)*1000)
# Make a directory to cache data on the disk.
wt_tempPath = args.output_path + 'wt_tmp/'
if not os.path.exists(wt_tempPath):
os.mkdir(wt_tempPath)
temet_tempPath = args.output_path + 'temet_tmp/'
if not os.path.exists(temet_tempPath):
os.mkdir(temet_tempPath)
concurrency = mp.cpu_count() - 1
if args.cpus is not None:
concurrency = args.cpus
print("Simulating %d particles per volume on %d processors." % (params['n_particles'], concurrency))
# For each 1000 particle chunk
for i in range(nChunks):
ticc = time.time()
if i == nChunks - 1:
chunkSize = lastChunkSize
else:
chunkSize = 1000
# PROCESS IMPLEMENTATION
manager = mp.Manager()
output_wt = manager.list()
output_temet = manager.list()
jobs = []
sema = mp.Semaphore(concurrency)
# For each particle
for j in range(chunkSize):
idx = i * 1000 + j
sema.acquire()
volIndex = 0
if multiVolume:
# If a multi-volume simulation, figure out which volume to send!!
indices = [i for i,x in enumerate(volumePairs)]
volIndex = n.random.choice(indices, p=volumeWeights)
pair = volumePairs[volIndex]
V_wt = pair[0]
V_temet = pair[1]
# Call the function (first two args are the lists in which outputs should be placed.)
p = mp.Process(target=simulateParticle, args=(output_wt, output_temet, params, V_wt, V_temet, volIndex, TtoF, idx, tic, sema))
jobs.append(p)
p.start()
for proc in jobs:
proc.join()
proc.terminate()
wt_chunkFileName = wt_tempPath + ('%d_chunk.tmp' % i)
temet_chunkFileName = temet_tempPath + ('%d_chunk.tmp' % i)
with open(wt_chunkFileName, 'wb') as filehandle:
pickle.dump(list(output_wt), filehandle)
filehandle.close()
with open(temet_chunkFileName, 'wb') as filehandle:
pickle.dump(list(output_temet), filehandle)
filehandle.close()
print("\nDone simulating all particles in: %s" % format_timedelta(time.time() - tic))
print("Rate of simulation: %.2f particles PAIRS per second." % (int(params['n_particles'])/float(time.time() - tic)))
simulation_rate = int(params['n_particles'])/float(time.time() - tic)
print('Writing out data...')
particles_wt, starfile_wt = processResultsFromChunkPath(wt_tempPath)
particles_temet, starfile_temet = processResultsFromChunkPath(temet_tempPath)
# Plot the first 8 images
fig = plt.figure(figsize=(12, 5))
col = 4
row = 2
for i in range(1, col*row +1):
img = particles_wt[i]
fig.add_subplot(row, col, i)
plt.imshow(img, cmap='gray')
plt.savefig(args.output_path + 'wt_plot.png')
# Plot the first 8 images
fig = plt.figure(figsize=(12, 5))
col = 4
row = 2
for i in range(1, col*row +1):
img = particles_temet[i]
fig.add_subplot(row, col, i)
plt.imshow(img, cmap='gray')
plt.savefig(args.output_path + 'temet_plot.png')
mrc.writeMRC(args.output_path + 'wt_simulated_particles.mrcs', n.transpose(particles_wt,(1,2,0)), params['pxSize'])
mrc.writeMRC(args.output_path + 'temet_simulated_particles.mrcs', n.transpose(particles_temet,(1,2,0)), params['pxSize'])
# Write the starfile
f = open((args.output_path + str(params['sigma_noise']) + '_wt_simulated_particles.star'), 'w')
# Write the header
f.write("\ndata_images\n\nloop_\n_rlnAmplitudeContrast #1 \n_rlnAnglePsi #2 \n_rlnAngleRot #3 \n_rlnAngleTilt #4 \n_rlnClassNumber #5 \n_rlnDefocusAngle #6 \n_rlnDefocusU #7 \n_rlnDefocusV #8 \n_rlnDetectorPixelSize #9 \n_rlnImageName #10 \n_rlnMagnification #11 \n_rlnOriginX #12 \n_rlnOriginY #13 \n_rlnPhaseShift #14 \n_rlnSphericalAberration #15\n_rlnVoltage #16\n\n")
# Write the particle information
for l in starfile_wt:
f.write(' '.join(l) + '\n')
f.close()
# Write the starfile
f = open((args.output_path + str(params['sigma_noise']) + '_temet_simulated_particles.star'), 'w')
# Write the header
f.write("\ndata_images\n\nloop_\n_rlnAmplitudeContrast #1 \n_rlnAnglePsi #2 \n_rlnAngleRot #3 \n_rlnAngleTilt #4 \n_rlnClassNumber #5 \n_rlnDefocusAngle #6 \n_rlnDefocusU #7 \n_rlnDefocusV #8 \n_rlnDetectorPixelSize #9 \n_rlnImageName #10 \n_rlnMagnification #11 \n_rlnOriginX #12 \n_rlnOriginY #13 \n_rlnPhaseShift #14 \n_rlnSphericalAberration #15\n_rlnVoltage #16\n\n")
# Write the particle information
for l in starfile_temet:
f.write(' '.join(l) + '\n')
f.close()
# Write the logfile
f = open((args.output_path + 'simulation_metadata.txt'), 'w')
f.write("Thank you for using this data simulator.\n")
f.write("https://github.com/hbhargava7/cryoem-data-simulation\n\n")
f.write("Simulated %d particle pairs in %s.\n" % (params['n_particles'], format_timedelta(time.time() - tic)))
f.write("Rate of simulation was %.2f particle PAIRS per second." % simulation_rate)
f.write("\n\nInput wt volume: %s.\n" % args.input_wt)
f.write("\n\nInput temet volume: %s.\n" % args.input_temet)
f.write("Output path: %s.\n\n" % args.output_path)
if args.sigma_noise is not None:
f.write("Used user-specified noise sigma: " + str(params['sigma_noise']))
else:
f.write("Used snr-based noise sigma: " + str(params['sigma_noise']))
params_string = "{" + "\n".join("{!r}: {!r},".format(k, v) for k, v in params.items()) + "}"
f.write("\n\n\nParameters Dump: \n" + str(params_string))
f.close()
print('Done!')
def readVolume(path):
vol, hdr = mrc.readMRC(path, inc_header=True)
boxSize = int(vol.shape[0])
pxSize = hdr['xlen']/hdr['nx']
premult = cryoops.compute_premultiplier(boxSize, 'lanczos', int(6))
V = density.real_to_fspace(premult.reshape((1,1,-1)) * premult.reshape((1,-1,1)) * premult.reshape((-1,1,1)) * vol)
return V, boxSize, pxSize
def processResultsFromChunkPath(tempPath):
results = []
chunkFiles = [f for f in os.listdir(tempPath) if os.path.isfile(os.path.join(tempPath, f))]
tempPath = os.path.abspath(tempPath)
for f in chunkFiles:
file = open(os.path.join(tempPath, f), 'rb')
chunk = pickle.load(file)
results.extend(chunk)
# Delete the temp directory
shutil.rmtree(tempPath)
results = sorted(results, key=lambda x: x[0])
particles = [result[1] for result in results]
starfile = [result[2] for result in results]
return particles,starfile
def signalMean(volume):
# Compute the mean of the signal, excluding zeros
nonzero = volume
nonzero[nonzero == 0] = n.nan
return n.nanmean(nonzero)
def query_yes_no(question, default="yes"):
"""Ask a yes/no question via raw_input() and return their answer.
"question" is a string that is presented to the user.
"default" is the presumed answer if the user just hits <Enter>.
It must be "yes" (the default), "no" or None (meaning
an answer is required of the user).
The "answer" return value is True for "yes" or False for "no".
"""
valid = {"yes": True, "y": True, "ye": True,
"no": False, "n": False}
if default is None:
prompt = " [y/n] "
elif default == "yes":
prompt = " [Y/n] "
elif default == "no":
prompt = " [y/N] "
else:
raise ValueError("invalid default answer: '%s'" % default)
while True:
sys.stdout.write(question + prompt)
choice = input().lower()
if default is not None and choice == '':
return valid[default]
elif choice in valid:
return valid[choice]
else:
sys.stdout.write("Please respond with 'yes' or 'no' "
"(or 'y' or 'n').\n")
def simulateParticle(output_wt, output_temet, params, V_wt, V_temet, volIndex, TtoF, i, tic, sema):
ellapse_time = time.time() - tic
remain_time = float(params['n_particles'] - i)*ellapse_time/max(i,1)
print("\r%.2f Percent Complete (%d particle pairs done)... (Elapsed: %s, Remaining: %s)" % ((i+1)/float(params['n_particles'])*100.0,i+1,format_timedelta(ellapse_time),format_timedelta(remain_time)), end="")
# Numpy random seed
n.random.seed(int.from_bytes(os.urandom(4), byteorder='little'))
# GENERATE PARTICLE ORIENTATION AND CTF PARAMETERS
p = {}
# Random orientation vector and get spherical angles
pt = n.random.randn(3)
pt /= n.linalg.norm(pt)
psi = 2*n.pi*n.random.rand()
# Compute Euler angles from a direction vector. Output EA is tuple with phi, theta, psi.
EA = geom.genEA(pt)[0]
EA[2] = psi
p['phi'] = EA[0]*180.0/n.pi
p['theta'] = EA[1]*180.0/n.pi
p['psi'] = EA[2]*180.0/n.pi
# Compute a random shift
shift = n.random.randn(2) * params['shift_sigma']
p['shift_x'] = shift[0]
p['shift_y'] = shift[1]
# Random defocus within the ranges
base_defocus = n.random.uniform(params['defocus_min'], params['defocus_max'])
p['defocus_a'] = base_defocus + n.random.uniform(-500,500)
p['defocus_b'] = base_defocus + n.random.uniform(-500,500)
p['astig_angle'] = n.random.uniform(params['defocus_ang_min'], params['defocus_ang_max'])
# CREATE THE PROJECTIONS AND APPLY CTFS
# Generate rotation matrix based on the Euler Angles
R = geom.rotmat3D_EA(*EA)[:,0:2]
slop = cryoops.compute_projection_matrix([R], params['boxSize'], params['kernel'], params['ksize'], params['rad'], 'rots')
S = cryoops.compute_shift_phases(shift.reshape((1,2)), params['boxSize'], params['rad'])[0]
D_wt = slop.dot(V_wt.reshape((-1,)))
D_wt *= S
D_temet = slop.dot(V_temet.reshape((-1,)))
D_temet *= S
# Generate the CTF
C = ctf.compute_full_ctf(None, params['boxSize'], params['pxSize'], params['accel_kv'], params['spherical_abberr'], params['amp_contrast'], p['defocus_a'], p['defocus_b'], n.radians(p['astig_angle']), 1, params['bfactor'])
# Apply CTF to the projection and write to particles array
wt_ctf_distorted = density.fspace_to_real((C*TtoF.dot(D_wt)).reshape((params['boxSize'],params['boxSize'])))
temet_ctf_distorted = density.fspace_to_real((C*TtoF.dot(D_temet)).reshape((params['boxSize'],params['boxSize'])))
noise = n.require(n.random.randn(params['boxSize'], params['boxSize'])*params['sigma_noise'],dtype=density.real_t)
wt_noise_added = wt_ctf_distorted + noise
temet_noise_added = temet_ctf_distorted + noise
wt_particle = -wt_noise_added
temet_particle = -temet_noise_added
# Save the particle parameters for the star file
wt_starfile_line = [str(params['amp_contrast']),
str(p['psi']),
str(p['phi']),
str(p['theta']),
str(1),
str(p['astig_angle']),
str(p['defocus_a']),
str(p['defocus_b']),
str(params['pxSize']),
"%d@/%s_wt_simulated_particles.mrcs" % (i+1, str(params['sigma_noise'])),
str(params['mag']),
str(0),
str(0),
str(0),
str(params['spherical_abberr']),
str(params['accel_kv'])]
temet_starfile_line = [str(params['amp_contrast']),
str(p['psi']),
str(p['phi']),
str(p['theta']),
str(1),
str(p['astig_angle']),
str(p['defocus_a']),
str(p['defocus_b']),
str(params['pxSize']),
"%d@/%s_temet_simulated_particles.mrcs" % (i+1,str(params['sigma_noise'])),
str(params['mag']),
str(0),
str(0),
str(0),
str(params['spherical_abberr']),
str(params['accel_kv'])]
output_wt.append((i, wt_particle, wt_starfile_line))
output_temet.append((i, temet_particle, temet_starfile_line))
sema.release()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--input_wt", help="input wild-type 3d volume", type=str)
parser.add_argument("--input_temet", help="input telluromethionine-type 3d volume", type=str)
parser.add_argument("--output_path", help="output path",type=str, required=True)
parser.add_argument("--n_particles", help="number of particles to simulate", type=int, required=True)
parser.add_argument("--sigma_noise", help="noise stdev", type=float, required=True)
parser.add_argument("--cpus", help="number of processors to use", type=int)
parser.add_argument("--overwrite", help="overwrite the target directory if necessary?", action='store_true')
parser.add_argument("--input_wt_volumes", help="input wt volumes from which to select", nargs='+', type=str, default=[])
parser.add_argument("--input_temet_volumes", help="input temet volumes from which to select", nargs='+', type=str, default=[])
parser.add_argument("--volume_weights", help="input temet volumes from which to select", nargs='+', type=float, default=[])
sys.exit(main(parser.parse_args()))