-
Notifications
You must be signed in to change notification settings - Fork 9
/
vec_env.py
221 lines (186 loc) · 6.79 KB
/
vec_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
"""
An interface for asynchronous vectorized environments.
"""
import ctypes
from abc import ABC, abstractmethod
from multiprocessing import Pipe, Array, Process
import gym
import numpy as np
from baselines import logger
_NP_TO_CT = {np.float32: ctypes.c_float,
np.int32: ctypes.c_int32,
np.int8: ctypes.c_int8,
np.uint8: ctypes.c_char,
np.bool: ctypes.c_bool}
_CT_TO_NP = {v: k for k, v in _NP_TO_CT.items()}
class CloudpickleWrapper(object):
"""
Uses cloudpickle to serialize contents (otherwise multiprocessing tries to use pickle)
"""
def __init__(self, x):
self.x = x
def __getstate__(self):
import cloudpickle
return cloudpickle.dumps(self.x)
def __setstate__(self, ob):
import pickle
self.x = pickle.loads(ob)
class VecEnv(ABC):
"""
An abstract asynchronous, vectorized environment.
"""
def __init__(self, num_envs, observation_space, action_space):
self.num_envs = num_envs
self.observation_space = observation_space
self.action_space = action_space
@abstractmethod
def reset(self):
"""
Reset all the environments and return an array of
observations, or a tuple of observation arrays.
If step_async is still doing work, that work will
be cancelled and step_wait() should not be called
until step_async() is invoked again.
"""
pass
@abstractmethod
def step_async(self, actions):
"""
Tell all the environments to start taking a step
with the given actions.
Call step_wait() to get the results of the step.
You should not call this if a step_async run is
already pending.
"""
pass
@abstractmethod
def step_wait(self):
"""
Wait for the step taken with step_async().
Returns (obs, rews, dones, infos):
- obs: an array of observations, or a tuple of
arrays of observations.
- rews: an array of rewards
- dones: an array of "episode done" booleans
- infos: a sequence of info objects
"""
pass
@abstractmethod
def close(self):
"""
Clean up the environments' resources.
"""
pass
def step(self, actions):
self.step_async(actions)
return self.step_wait()
def render(self):
logger.warn('Render not defined for %s' % self)
class ShmemVecEnv(VecEnv):
"""
An AsyncEnv that uses multiprocessing to run multiple
environments in parallel.
"""
def __init__(self, env_fns, spaces=None):
"""
If you don't specify observation_space, we'll have to create a dummy
environment to get it.
"""
if spaces:
observation_space, action_space = spaces
else:
logger.log('Creating dummy env object to get spaces')
with logger.scoped_configure(format_strs=[]):
dummy = env_fns[0]()
observation_space, action_space = dummy.observation_space, dummy.action_space
dummy.close()
del dummy
VecEnv.__init__(self, len(env_fns), observation_space, action_space)
obs_spaces = observation_space.spaces if isinstance(self.observation_space, gym.spaces.Tuple) else (
self.observation_space,)
self.obs_bufs = [tuple(Array(_NP_TO_CT[s.dtype.type], int(np.prod(s.shape))) for s in obs_spaces) for _ in
env_fns]
self.obs_shapes = [s.shape for s in obs_spaces]
self.obs_dtypes = [s.dtype for s in obs_spaces]
self.parent_pipes = []
self.procs = []
for env_fn, obs_buf in zip(env_fns, self.obs_bufs):
wrapped_fn = CloudpickleWrapper(env_fn)
parent_pipe, child_pipe = Pipe()
proc = Process(target=_subproc_worker,
args=(child_pipe, parent_pipe, wrapped_fn, obs_buf, self.obs_shapes))
proc.daemon = True
self.procs.append(proc)
self.parent_pipes.append(parent_pipe)
proc.start()
child_pipe.close()
self.waiting_step = False
def reset(self):
if self.waiting_step:
logger.warn('Called reset() while waiting for the step to complete')
self.step_wait()
for pipe in self.parent_pipes:
pipe.send(('reset', None))
return self._decode_obses([pipe.recv() for pipe in self.parent_pipes])
def step_async(self, actions):
assert len(actions) == len(self.parent_pipes)
for pipe, act in zip(self.parent_pipes, actions):
pipe.send(('step', act))
def step_wait(self):
outs = [pipe.recv() for pipe in self.parent_pipes]
obs, rews, dones, infos = zip(*outs)
return self._decode_obses(obs), np.array(rews), np.array(dones), infos
def close(self):
if self.waiting_step:
self.step_wait()
for pipe in self.parent_pipes:
pipe.send(('close', None))
for pipe in self.parent_pipes:
pipe.recv()
pipe.close()
for proc in self.procs:
proc.join()
def _decode_obses(self, obs):
"""
Turn the observation responses into a single numpy
array, possibly via shared memory.
"""
obs = []
for i, shape in enumerate(self.obs_shapes):
bufs = [b[i] for b in self.obs_bufs]
o = [np.frombuffer(b.get_obj(), dtype=self.obs_dtypes[i]).reshape(shape) for b in bufs]
obs.append(np.array(o))
return tuple(obs) if len(obs) > 1 else obs[0]
def _subproc_worker(pipe, parent_pipe, env_fn_wrapper, obs_buf, obs_shape):
"""
Control a single environment instance using IPC and
shared memory.
If obs_buf is not None, it is a shared-memory buffer
for communicating observations.
"""
def _write_obs(obs):
if not isinstance(obs, tuple):
obs = (obs,)
for o, b, s in zip(obs, obs_buf, obs_shape):
dst = b.get_obj()
dst_np = np.frombuffer(dst, dtype=_CT_TO_NP[dst._type_]).reshape(s) # pylint: disable=W0212
np.copyto(dst_np, o)
env = env_fn_wrapper.x()
parent_pipe.close()
try:
while True:
cmd, data = pipe.recv()
if cmd == 'reset':
pipe.send(_write_obs(env.reset()))
elif cmd == 'step':
obs, reward, done, info = env.step(data)
if done:
obs = env.reset()
pipe.send((_write_obs(obs), reward, done, info))
elif cmd == 'close':
pipe.send(None)
break
else:
raise RuntimeError('Got unrecognized cmd %s' % cmd)
finally:
env.close()