-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_unet.py
98 lines (94 loc) · 3.98 KB
/
train_unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
##########################################
# @subject : Person segmentation #
# @author : perryxin #
# @date : 2018.12.27 #
##########################################
import torch.utils.data as Data
from read_data import *
from util import *
from models.unet_plusplus import *
import tqdm
dataset_train = MyData(istrain="train", size=256)
dataset_val = MyData(istrain="val", size=256)
loader_train = Data.DataLoader(dataset_train, batch_size=conf.BATCH_SIZE_TRAIN, shuffle=True, drop_last=True,
num_workers=4)
loader_val = Data.DataLoader(dataset_val, batch_size=conf.BATCH_SIZE_VAL, shuffle=False, num_workers=1)
unet = Unet_2D(3, 1)
if 0: # whether to load the pretrained model
checkpoint = torch.load('/data1/codes/pseg_unet++/results/modified5_cc=16_256/unet++_10.pth',
map_location=lambda storage, loc: storage)
unet.load_state_dict(checkpoint['net'])
start_i = checkpoint['epoch'] + 1
optimizer = torch.optim.Adam(unet.parameters(), lr=conf.LR, weight_decay=conf.WEIGHT_DECAY, amsgrad=True)
optimizer.load_state_dict(checkpoint['optimizer'])
for state in optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.cuda(0)
else:
start_i = 0
optimizer = torch.optim.Adam(unet.parameters(), lr=conf.LR, weight_decay=conf.WEIGHT_DECAY, amsgrad=True)
criterion = nn.BCELoss()
unet.cuda(0)
print("train_images", len(dataset_train))
print("val_images", len(dataset_val))
print("start training...")
# start training ###########################################################################
val_iou_all = 0
for epoch in range(start_i, conf.EPOCH):
# step learning rate schedule
if epoch == 20:
adjust_learning_rate(optimizer, conf.LR * 0.5)
print("LR change to 0.5*LR")
elif epoch == 40:
adjust_learning_rate(optimizer, conf.LR * 0.1)
print("LR change to 0.1*LR")
tq = tqdm.tqdm(total=len(loader_train) * conf.BATCH_SIZE_TRAIN)
tq.set_description('epoch %d' % epoch)
# train###############################################################################
unet.train()
for i, (img, label) in enumerate(loader_train):
output0, output1, output2 = unet(img.float().cuda(0))
loss = (criterion(output0, label.float().cuda(0)) + criterion(output1, label.float().cuda(0)) + criterion(
output2, label.float().cuda(0))) / 3
tq.update(conf.BATCH_SIZE_TRAIN)
tq.set_postfix(loss='%.4f' % loss)
optimizer.zero_grad()
loss.backward() #
optimizer.step()
train_loss += loss
tq.close()
train_loss /= len(loader_train)
# val###############################################################################
unet.eval()
val_iou = 0
val_iou1 = 0
val_iou2 = 0
for i, (img, label) in enumerate(loader_val):
### unet++ has three outputs. output1,outpu2 will be pruned while testing
output, output1, output2 = unet(img.float().cuda(0))
####0
output[output >= 0.5] = 1
output[output != 1] = 0
iou_ = iou(output, label)
val_iou += iou_
####1
output1[output1 >= 0.5] = 1
output1[output1 != 1] = 0
iou_1 = iou(output1, label)
val_iou1 += iou_1
####2
output2[output2 >= 0.5] = 1
output2[output2 != 1] = 0
iou_2 = iou(output2, label)
val_iou2 += iou_2
val_iou /= len(loader_val)
val_iou1 /= len(loader_val)
val_iou2 /= len(loader_val)
# if val iou improves , then save the model
if val_iou_all <= val_iou:
val_iou_all = val_iou
state = {'net': unet.state_dict(), 'optimizer': optimizer.state_dict(), 'epoch': epoch}
torch.save(state, "./results/modified5_cc=16_256/unet++_%d.pth" % epoch)
print("EPOCH %d : train_loss : %.4f , val_iou : %.4f , val_iou1 : %.4f, val_iou2 : %.4f" % (
epoch, train_loss, val_iou, val_iou1, val_iou2))