-
Notifications
You must be signed in to change notification settings - Fork 0
/
lenet5_infernece.py
67 lines (55 loc) · 2.87 KB
/
lenet5_infernece.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import tensorflow as tf
import numpy as np
INPUT_NODE = 784
OUTPUT_NODE = 10
IMAGE_SIZE = 28
NUM_CHANNELS = 1
NUM_LABELS = 10
CONV1_DEEP = 32
CONV1_SIZE = 5
CONV2_DEEP = 64
CONV2_SIZE = 5
FC_SIZE = 512
def inference(input_tensor, train, regularizer,train_label):
with tf.variable_scope('layer1-conv1'):
conv1_weights = tf.get_variable(
"weight", [CONV1_SIZE, CONV1_SIZE, NUM_CHANNELS, CONV1_DEEP],
initializer=tf.truncated_normal_initializer(stddev=0.1))
conv1_biases = tf.get_variable("bias", [CONV1_DEEP], initializer=tf.constant_initializer(0.0))
conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1, 1, 1, 1], padding='SAME')
# conv1=tf.layers.batch_normalization(conv1, is_training)
relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases))
with tf.name_scope("layer2-pool1"):
pool1 = tf.nn.max_pool(relu1, ksize = [1,2,2,1],strides=[1,2,2,1],padding="SAME")
with tf.variable_scope("layer3-conv2"):
conv2_weights = tf.get_variable(
"weight", [CONV2_SIZE, CONV2_SIZE, CONV1_DEEP, CONV2_DEEP],
initializer=tf.truncated_normal_initializer(stddev=0.1))
conv2_biases = tf.get_variable("bias", [CONV2_DEEP], initializer=tf.constant_initializer(0.0))
conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1], padding='SAME')
# conv2=tf.layers.batch_normalization(conv2, is_training)
relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases))
with tf.name_scope("layer4-pool2"):
pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
pool_shape = pool2.get_shape()
nodes = pool_shape[1] * pool_shape[2] * pool_shape[3]
#reshaped = tf.reshape(pool2, [pool_shape[0], nodes])
reshaped = tf.reshape(pool2, [-1, nodes])
with tf.variable_scope('layer5-fc1'):
fc1_weights = tf.get_variable("weight", [nodes, FC_SIZE],
initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None: tf.add_to_collection('losses', regularizer(fc1_weights))
fc1_biases = tf.get_variable("bias", [FC_SIZE], initializer=tf.constant_initializer(0.1))
fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_biases)
if train: fc1 = tf.nn.dropout(fc1, 0.7)
with tf.variable_scope('layer6-fc2'):
fc2_weights = tf.get_variable("weight", [FC_SIZE, NUM_LABELS],
initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None: tf.add_to_collection('losses', regularizer(fc2_weights))
x=fc1
w=fc2_weights
normed_weights = tf.nn.l2_normalize(w, 0, 1e-10, name='weights_norm')
normed_features = tf.nn.l2_normalize(x, 1, 1e-10, name='features_norm')
cosine = tf.matmul(normed_features, normed_weights)
cosine = tf.clip_by_value(cosine, -1, 1, name='cosine_clip') - 0.35* tf.one_hot(train_label,10, on_value=1., off_value=0., axis=-1, dtype=tf.float32)
return cosine,tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=train_label,logits=30* cosine))