-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlong_doc_train.py
42 lines (35 loc) · 1.39 KB
/
long_doc_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from long_document_model import *
from preprocess import *
from utils import *
if __name__ == '__main__':
train_df = pd.read_csv('public_train.csv')
test_df = pd.read_csv('public_test.csv')
val_df = pd.read_csv('val.csv')
if torch.cuda.is_available():
device = torch.device('cuda')
print(torch.cuda.get_device_name())
else:
device = torch.device('cpu')
seed_everything(69)
vncorenlp = VnCoreNLP('VnCoreNLP-1.1.1.jar', annotators='wseg')
tweetTokenizer = TweetTokenizer()
# process training set
error_label_idx = []
tr_texts = []
for i, post in enumerate(train_df.post_message):
if not isnan(post):
tr_texts.append(normalizePost(post, use_segment=True, remove_punc_stopword=False))
else:
error_label_idx.append(i)
tr_labels = train_df.iloc[~train_df.index.isin(error_label_idx)].label.to_list()
# process validation set
error_label_idx = []
vl_texts = []
for i, post in enumerate(val_df.post_message):
if not isnan(post):
vl_texts.append(normalizePost(post, use_segment=True, remove_punc_stopword=False))
else:
error_label_idx.append(i)
vl_labels = val_df.iloc[~val_df.index.isin(error_label_idx)].label.to_list()
document_model = RobertaForDocumentClassification()
document_model.fit((tr_texts, tr_labels), (vl_texts, vl_labels))