-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
164 lines (141 loc) · 7.56 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from eval import *
EPOCHS = 20
BATCH_SIZE = 8
ACCUMULATION_STEPS = 5
if __name__ == '__main__':
train_df = pd.read_csv('public_train.csv')
val_df = pd.read_csv('val.csv')
if torch.cuda.is_available():
device = torch.device('cuda')
print(torch.cuda.get_device_name())
else:
device = torch.device('cpu')
# load config
config_path = 'config/electra_1.json'
single_model_config = json.load(open(config_path, 'r'))
# init external tools
vncorenlp = VnCoreNLP('VnCoreNLP-1.1.1.jar', annotators='wseg')
tweet_tokenizer = TweetTokenizer()
# process training set
error_label_idx = []
tr_texts = []
for i, post in enumerate(train_df.post_message):
if not isnan(post):
tr_texts.append(normalizePost(post, tweet_tokenizer, vncorenlp, use_segment=single_model_config['use_wordsegment'],
remove_punc_stopword=single_model_config['remove_punc_stopword']))
else:
error_label_idx.append(i)
tr_labels = train_df.iloc[~train_df.index.isin(error_label_idx)].label.to_list()
train_ids, train_masks, train_labels = convert_samples_to_ids(tr_texts, tr_labels)
train_dataset = torch.utils.data.TensorDataset(train_ids, train_masks, train_labels)
train_sampler = torch.utils.data.RandomSampler(train_dataset)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=BATCH_SIZE, sampler=train_sampler)
# process validation set
error_label_idx = []
vl_texts = []
for i, post in enumerate(val_df.post_message):
if not isnan(post):
vl_texts.append(normalizePost(post, tweet_tokenizer, vncorenlp, use_segment=single_model_config['use_wordsegment'],
remove_punc_stopword=single_model_config['remove_punc_stopword']))
else:
error_label_idx.append(i)
vl_labels = val_df.iloc[~val_df.index.isin(error_label_idx)].label.to_list()
val_ids, val_masks, val_labels = convert_samples_to_ids(vl_texts, vl_labels)
val_dataset = torch.utils.data.TensorDataset(val_ids, val_masks, val_labels)
val_sampler = torch.utils.data.SequentialSampler(val_dataset)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=BATCH_SIZE, sampler=val_sampler)
for _ in range(10):
seed = np.random.randint(0, 10000)
seed_everything(seed)
# init tokenizer
if single_model_config['model_type'] == 'BERT':
print("===Use BERT model===")
tokenizer = BertTokenizer.from_pretrained(single_model_config['model_name'], do_lower_case=False)
tokenizer.add_tokens(['<url>'])
config = BertConfig.from_pretrained(single_model_config['model_name'], num_labels=1,
output_hidden_states=True)
model = BertReINTELClassification.from_pretrained(single_model_config['model_name'], config=config)
model.to(device)
tsfm = model.bert
elif single_model_config['model_type'] == 'ROBERTA':
print("===Use ROBERTA model===")
tokenizer = PhobertTokenizer.from_pretrained(single_model_config['model_name'])
tokenizer.add_tokens(['<url>'])
config = RobertaConfig.from_pretrained(single_model_config['model_name'], num_labels=1,
output_hidden_states=True)
model = RobertaReINTELClassification.from_pretrained(single_model_config['model_name'], config=config)
model.resize_token_embeddings(len(tokenizer))
model.to(device)
tsfm = model.roberta
elif single_model_config['model_type'] == 'ELECTRA':
print("===Use ELECTRA model===")
tokenizer = ElectraTokenizer.from_pretrained(single_model_config['model_name'], do_lower_case=False)
tokenizer.add_tokens(['<url>'])
config = ElectraConfig.from_pretrained(single_model_config['model_name'], num_labels=1,
output_hidden_states=True, output_attentions=False)
model = ElectraReINTELClassification.from_pretrained(single_model_config['model_name'], config=config)
model.resize_token_embeddings(len(tokenizer))
model.to(device)
tsfm = model.electra
elif single_model_config['model_type'] == 'XML_ROBERTA':
print("===Use XML-ROBERTA model===")
tokenizer = XLMRobertaTokenizer.from_pretrained(single_model_config['model_name'], do_lower_case=False)
tokenizer.add_tokens(['<url>'])
else:
print("Model type invalid!!!")
num_train_optimization_steps = int(EPOCHS * len(train_dataset) / BATCH_SIZE / ACCUMULATION_STEPS)
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(np in n for np in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(np in n for np in no_decay)], 'weight_decay': 0.01}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=3e-5, correct_bias=False)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=100,
num_training_steps=num_train_optimization_steps)
scheduler0 = get_constant_schedule(optimizer)
# freeze head layers
for child in tsfm.children():
for param in child.parameters():
param.requires_grad = False
# Convert to iterator
frozen = True
best_score = 0.0
for epoch in range(EPOCHS + 1):
# unfreeze
if epoch > 0 and frozen:
for child in tsfm.children():
for param in child.parameters():
param.requires_grad = True
frozen = False
del scheduler0
torch.cuda.empty_cache()
print('\n------ Start training on Epoch: %d/%d' % (epoch, EPOCHS))
avg_loss = 0
avg_accuracy = 0
# Training process
model.train()
for i, (input_ids, attention_mask, y_batch) in enumerate(train_loader):
if (i % 20 == 0 and not i == 0) or (i == len(train_loader)):
print(f'Batch {i} of {len(train_loader)}...')
optimizer.zero_grad()
y_pred = model(input_ids.to(device), attention_mask=attention_mask.to(device))
loss = torch.nn.functional.binary_cross_entropy_with_logits(y_pred.view(-1).to(device),
y_batch.float().to(device))
loss = loss.mean()
loss.backward()
optimizer.step()
lossf = loss.item()
avg_loss += loss.item() / len(train_loader)
if not frozen:
scheduler.step()
else:
scheduler0.step()
optimizer.zero_grad()
# save_checkpoint(model, tokenizer, 'trained_models/bert_multilingual', epoch=epoch)
roc_score = eval(val_loader, model, epoch, seed)
if roc_score >= best_score:
save_checkpoint(model, tokenizer, 'trained_models/phobert_random', epoch=seed)
best_score = roc_score
print("Updated best score model!!! -------<{}>" % best_score)
print('==========================================')