-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstrategies-examples.htm
353 lines (290 loc) · 30.5 KB
/
strategies-examples.htm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
<html>
<head>
<title>Z3Py Strategies</title>
<link rel="StyleSheet" href="style.css" type="text/css">
</head>
<body>
<h3><div style="display: flex; justify-content: space-between; margin-left: 30%; margin-right: 30%;">
<a href="guide-examples.htm">Basics</a> <a href="strategies-examples.htm">Strategies</a> <a href="fixpoint-examples.htm">Fixpoints</a> <a href="advanced-examples.htm">Advanced</a>
</div></h3>
<h1>Strategies</h1>
<p>
High-performance solvers, such as Z3, contain many tightly integrated, handcrafted heuristic
combinations of algorithmic proof methods. While these heuristic
combinations tend to be highly tuned for known classes of problems,
they may easily perform very badly on new classes of problems.
This issue is becoming increasingly pressing
as solvers begin to gain the attention of practitioners in diverse areas of science and engineering.
In many cases, changes to the solver heuristics can make a
tremendous difference.
</p>
<p>
In this tutorial we show how to create custom strategies using the basic building blocks
available in Z3. Z3Py and Z3 4.0 implement the ideas proposed in this <a target="_blank" href="http://research.microsoft.com/en-us/um/people/leonardo/strategy.pdf">article</a>.
</p>
<p>
Please send feedback, comments and/or corrections to <a href="mailto:[email protected]">[email protected]</a>.
Your comments are very valuable.
</p>
<h2>Introduction</h2>
<p>
Z3 implements a methodology for orchestrating reasoning
engines where "big" symbolic reasoning steps are represented as
functions known as <b>tactics</b>, and tactics are composed using
combinators known as <b>tacticals</b>. Tactics process sets of
formulas called <b>Goals</b>.
</p>
<p>
When a tactic is applied to some goal <tt>G</tt>, four different outcomes
are possible. The tactic succeeds in showing <tt>G</tt> to be satisfiable (i.e., feasible);
succeeds in showing <tt>G</tt> to be unsatisfiable (i.e., infeasible); produces a sequence of subgoals; or fails.
When reducing a goal <tt>G</tt> to a sequence of subgoals <tt>G1</tt>, ...,
<tt>Gn</tt>, we face the problem of model conversion.
A <b>model converter</b> construct a model for <tt>G</tt>
using a model for some subgoal <tt>Gi</tt>.
</p>
<p>In the following example, we create a goal <tt>g</tt> consisting of three formulas, and a tactic <tt>t</tt>
composed of two built-in tactics: <tt>simplify</tt> and <tt>solve-eqs</tt>. The tactic <tt>simplify</tt>
apply transformations equivalent to the ones found in the command <tt>simplify</tt>. The tactic <tt>solver-eqs</tt>
eliminate variables using Gaussian elimination. Actually, <tt>solve-eqs</tt> is not restricted only to linear arithmetic.
It can also eliminate arbitrary variables. Then, combinator <tt>Then</tt> applies <tt>simplify</tt> to the input goal
and <tt>solve-eqs</tt> to each subgoal produced by <tt>simplify</tt>. In this example, only one subgoal is produced.
</p>
<example pref="tactic.1"><html><body>
<div class="highlight"><pre><span class="n">x</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="n">Reals</span><span class="p">(</span><span class="s">'x y'</span><span class="p">)</span>
<span class="n">g</span> <span class="o">=</span> <span class="n">Goal</span><span class="p">()</span>
<span class="n">g</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">x</span> <span class="o">></span> <span class="mi">0</span><span class="p">,</span> <span class="n">y</span> <span class="o">></span> <span class="mi">0</span><span class="p">,</span> <span class="n">x</span> <span class="o">==</span> <span class="n">y</span> <span class="o">+</span> <span class="mi">2</span><span class="p">)</span>
<span class="k">print</span> <span class="n">g</span>
<span class="n">t1</span> <span class="o">=</span> <span class="n">Tactic</span><span class="p">(</span><span class="s">'simplify'</span><span class="p">)</span>
<span class="n">t2</span> <span class="o">=</span> <span class="n">Tactic</span><span class="p">(</span><span class="s">'solve-eqs'</span><span class="p">)</span>
<span class="n">t</span> <span class="o">=</span> <span class="n">Then</span><span class="p">(</span><span class="n">t1</span><span class="p">,</span> <span class="n">t2</span><span class="p">)</span>
<span class="k">print</span> <span class="n">t</span><span class="p">(</span><span class="n">g</span><span class="p">)</span>
</pre></div>
</body></html></example>
<p>In the example above, variable <tt>x</tt> is eliminated, and is not present the resultant goal.
</p>
<p>In Z3, we say a <b>clause</b> is any constraint of the form <tt>Or(f_1, ..., f_n)</tt>.
The tactic <tt>split-clause</tt> will select a clause <tt>Or(f_1, ..., f_n)</tt> in the input goal, and split it
<tt>n</tt> subgoals. One for each subformula <tt>f_i</tt>.
</p>
<example pref="tactic.2"><html><body>
<div class="highlight"><pre><span class="n">x</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="n">Reals</span><span class="p">(</span><span class="s">'x y'</span><span class="p">)</span>
<span class="n">g</span> <span class="o">=</span> <span class="n">Goal</span><span class="p">()</span>
<span class="n">g</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">Or</span><span class="p">(</span><span class="n">x</span> <span class="o"><</span> <span class="mi">0</span><span class="p">,</span> <span class="n">x</span> <span class="o">></span> <span class="mi">0</span><span class="p">),</span> <span class="n">x</span> <span class="o">==</span> <span class="n">y</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="n">y</span> <span class="o"><</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">t</span> <span class="o">=</span> <span class="n">Tactic</span><span class="p">(</span><span class="s">'split-clause'</span><span class="p">)</span>
<span class="n">r</span> <span class="o">=</span> <span class="n">t</span><span class="p">(</span><span class="n">g</span><span class="p">)</span>
<span class="k">for</span> <span class="n">g</span> <span class="ow">in</span> <span class="n">r</span><span class="p">:</span>
<span class="k">print</span> <span class="n">g</span>
</pre></div>
</body></html></example>
<h2>Tactics</h2>
<p>Z3 comes equipped with many built-in tactics.
The command <tt>describe_tactics()</tt> provides a short description of all built-in tactics.
</p>
<example pref="tactic.3"><html><body>
<div class="highlight"><pre><span class="n">describe_tactics</span><span class="p">()</span>
</pre></div>
</body></html></example>
<p>Z3Py comes equipped with the following tactic combinators (aka tacticals):
</p>
<ul>
<li> <tt>Then(t, s)</tt>
applies <tt>t</tt> to the input goal and <tt>s</tt>
to every subgoal produced by <tt>t</tt>.
</li>
<li> <tt>OrElse(t, s)</tt>
first applies <tt>t</tt> to the given goal,
if it fails then returns the result of <tt>s</tt> applied to the given goal.
</li>
<li> <tt>Repeat(t)</tt> Keep applying the given tactic until no subgoal is modified by it.
</li>
<li> <tt>Repeat(t, n)</tt> Keep applying the given tactic until no subgoal is modified by it, or
the number of iterations is greater than <tt>n</tt>.
</li>
<li> <tt>TryFor(t, ms)</tt> Apply tactic <tt>t</tt> to the input goal, if it does not return in
<tt>ms</tt> millisenconds, it fails.
</li>
<li> <tt>With(t, params)</tt> Apply the given tactic using the given parameters.
</li>
</ul>
<p>The following example demonstrate how to use these combinators.</p>
<example pref="tactic.4"><html><body>
<div class="highlight"><pre><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">z</span> <span class="o">=</span> <span class="n">Reals</span><span class="p">(</span><span class="s">'x y z'</span><span class="p">)</span>
<span class="n">g</span> <span class="o">=</span> <span class="n">Goal</span><span class="p">()</span>
<span class="n">g</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">Or</span><span class="p">(</span><span class="n">x</span> <span class="o">==</span> <span class="mi">0</span><span class="p">,</span> <span class="n">x</span> <span class="o">==</span> <span class="mi">1</span><span class="p">),</span>
<span class="n">Or</span><span class="p">(</span><span class="n">y</span> <span class="o">==</span> <span class="mi">0</span><span class="p">,</span> <span class="n">y</span> <span class="o">==</span> <span class="mi">1</span><span class="p">),</span>
<span class="n">Or</span><span class="p">(</span><span class="n">z</span> <span class="o">==</span> <span class="mi">0</span><span class="p">,</span> <span class="n">z</span> <span class="o">==</span> <span class="mi">1</span><span class="p">),</span>
<span class="n">x</span> <span class="o">+</span> <span class="n">y</span> <span class="o">+</span> <span class="n">z</span> <span class="o">></span> <span class="mi">2</span><span class="p">)</span>
<span class="c"># Split all clauses"</span>
<span class="n">split_all</span> <span class="o">=</span> <span class="n">Repeat</span><span class="p">(</span><span class="n">OrElse</span><span class="p">(</span><span class="n">Tactic</span><span class="p">(</span><span class="s">'split-clause'</span><span class="p">),</span>
<span class="n">Tactic</span><span class="p">(</span><span class="s">'skip'</span><span class="p">)))</span>
<span class="k">print</span> <span class="n">split_all</span><span class="p">(</span><span class="n">g</span><span class="p">)</span>
<span class="n">split_at_most_2</span> <span class="o">=</span> <span class="n">Repeat</span><span class="p">(</span><span class="n">OrElse</span><span class="p">(</span><span class="n">Tactic</span><span class="p">(</span><span class="s">'split-clause'</span><span class="p">),</span>
<span class="n">Tactic</span><span class="p">(</span><span class="s">'skip'</span><span class="p">)),</span>
<span class="mi">1</span><span class="p">)</span>
<span class="k">print</span> <span class="n">split_at_most_2</span><span class="p">(</span><span class="n">g</span><span class="p">)</span>
<span class="c"># Split all clauses and solve equations</span>
<span class="n">split_solve</span> <span class="o">=</span> <span class="n">Then</span><span class="p">(</span><span class="n">Repeat</span><span class="p">(</span><span class="n">OrElse</span><span class="p">(</span><span class="n">Tactic</span><span class="p">(</span><span class="s">'split-clause'</span><span class="p">),</span>
<span class="n">Tactic</span><span class="p">(</span><span class="s">'skip'</span><span class="p">))),</span>
<span class="n">Tactic</span><span class="p">(</span><span class="s">'solve-eqs'</span><span class="p">))</span>
<span class="k">print</span> <span class="n">split_solve</span><span class="p">(</span><span class="n">g</span><span class="p">)</span>
</pre></div>
</body></html></example>
<p>In the tactic <tt>split_solver</tt>, the tactic <tt>solve-eqs</tt> discharges all but one goal.
Note that, this tactic generates one goal: the empty goal which is trivially satisfiable (i.e., feasible) </p>
<p>The list of subgoals can be easily traversed using the Python <tt>for</tt> statement.</p>
<example pref="tactic.5"><html><body>
<div class="highlight"><pre><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">z</span> <span class="o">=</span> <span class="n">Reals</span><span class="p">(</span><span class="s">'x y z'</span><span class="p">)</span>
<span class="n">g</span> <span class="o">=</span> <span class="n">Goal</span><span class="p">()</span>
<span class="n">g</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">Or</span><span class="p">(</span><span class="n">x</span> <span class="o">==</span> <span class="mi">0</span><span class="p">,</span> <span class="n">x</span> <span class="o">==</span> <span class="mi">1</span><span class="p">),</span>
<span class="n">Or</span><span class="p">(</span><span class="n">y</span> <span class="o">==</span> <span class="mi">0</span><span class="p">,</span> <span class="n">y</span> <span class="o">==</span> <span class="mi">1</span><span class="p">),</span>
<span class="n">Or</span><span class="p">(</span><span class="n">z</span> <span class="o">==</span> <span class="mi">0</span><span class="p">,</span> <span class="n">z</span> <span class="o">==</span> <span class="mi">1</span><span class="p">),</span>
<span class="n">x</span> <span class="o">+</span> <span class="n">y</span> <span class="o">+</span> <span class="n">z</span> <span class="o">></span> <span class="mi">2</span><span class="p">)</span>
<span class="c"># Split all clauses"</span>
<span class="n">split_all</span> <span class="o">=</span> <span class="n">Repeat</span><span class="p">(</span><span class="n">OrElse</span><span class="p">(</span><span class="n">Tactic</span><span class="p">(</span><span class="s">'split-clause'</span><span class="p">),</span>
<span class="n">Tactic</span><span class="p">(</span><span class="s">'skip'</span><span class="p">)))</span>
<span class="k">for</span> <span class="n">s</span> <span class="ow">in</span> <span class="n">split_all</span><span class="p">(</span><span class="n">g</span><span class="p">):</span>
<span class="k">print</span> <span class="n">s</span>
</pre></div>
</body></html></example>
<p>A tactic can be converted into a solver object using the method <tt>solver()</tt>.
If the tactic produces the empty goal, then the associated solver returns <tt>sat</tt>.
If the tactic produces a single goal containing <tt>False</tt>, then the solver returns <tt>unsat</tt>.
Otherwise, it returns <tt>unknown</tt>.
</p>
<example pref="tactic.6"><html><body>
<div class="highlight"><pre><span class="n">bv_solver</span> <span class="o">=</span> <span class="n">Then</span><span class="p">(</span><span class="s">'simplify'</span><span class="p">,</span>
<span class="s">'solve-eqs'</span><span class="p">,</span>
<span class="s">'bit-blast'</span><span class="p">,</span>
<span class="s">'sat'</span><span class="p">)</span><span class="o">.</span><span class="n">solver</span><span class="p">()</span>
<span class="n">x</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="n">BitVecs</span><span class="p">(</span><span class="s">'x y'</span><span class="p">,</span> <span class="mi">16</span><span class="p">)</span>
<span class="n">solve_using</span><span class="p">(</span><span class="n">bv_solver</span><span class="p">,</span> <span class="n">x</span> <span class="o">|</span> <span class="n">y</span> <span class="o">==</span> <span class="mi">13</span><span class="p">,</span> <span class="n">x</span> <span class="o">></span> <span class="n">y</span><span class="p">)</span>
</pre></div>
</body></html></example>
<p>In the example above, the tactic <tt>bv_solver</tt> implements a basic bit-vector solver using equation solving,
bit-blasting, and a propositional SAT solver. Note that, the command <tt>Tactic</tt> is suppressed.
All Z3Py combinators automatically invoke <tt>Tactic</tt> command if the argument is a string.
Finally, the command <tt>solve_using</tt> is a variant of the <tt>solve</tt> command where the first
argument specifies the solver to be used.
</p>
<p>In the following example, we use the solver API directly instead of the command <tt>solve_using</tt>.
We use the combinator <tt>With</tt> to configure our little solver. We also include the tactic <tt>aig</tt>
which tries to compress Boolean formulas using And-Inverted Graphs.
</p>
<example pref="tactic.7"><html><body>
<div class="highlight"><pre><span class="n">bv_solver</span> <span class="o">=</span> <span class="n">Then</span><span class="p">(</span><span class="n">With</span><span class="p">(</span><span class="s">'simplify'</span><span class="p">,</span> <span class="n">mul2concat</span><span class="o">=</span><span class="bp">True</span><span class="p">),</span>
<span class="s">'solve-eqs'</span><span class="p">,</span>
<span class="s">'bit-blast'</span><span class="p">,</span>
<span class="s">'aig'</span><span class="p">,</span>
<span class="s">'sat'</span><span class="p">)</span><span class="o">.</span><span class="n">solver</span><span class="p">()</span>
<span class="n">x</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="n">BitVecs</span><span class="p">(</span><span class="s">'x y'</span><span class="p">,</span> <span class="mi">16</span><span class="p">)</span>
<span class="n">bv_solver</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">x</span><span class="o">*</span><span class="mi">32</span> <span class="o">+</span> <span class="n">y</span> <span class="o">==</span> <span class="mi">13</span><span class="p">,</span> <span class="n">x</span> <span class="o">&</span> <span class="n">y</span> <span class="o"><</span> <span class="mi">10</span><span class="p">,</span> <span class="n">y</span> <span class="o">></span> <span class="o">-</span><span class="mi">100</span><span class="p">)</span>
<span class="k">print</span> <span class="n">bv_solver</span><span class="o">.</span><span class="n">check</span><span class="p">()</span>
<span class="n">m</span> <span class="o">=</span> <span class="n">bv_solver</span><span class="o">.</span><span class="n">model</span><span class="p">()</span>
<span class="k">print</span> <span class="n">m</span>
<span class="k">print</span> <span class="n">x</span><span class="o">*</span><span class="mi">32</span> <span class="o">+</span> <span class="n">y</span><span class="p">,</span> <span class="s">"=="</span><span class="p">,</span> <span class="n">m</span><span class="o">.</span><span class="n">evaluate</span><span class="p">(</span><span class="n">x</span><span class="o">*</span><span class="mi">32</span> <span class="o">+</span> <span class="n">y</span><span class="p">)</span>
<span class="k">print</span> <span class="n">x</span> <span class="o">&</span> <span class="n">y</span><span class="p">,</span> <span class="s">"=="</span><span class="p">,</span> <span class="n">m</span><span class="o">.</span><span class="n">evaluate</span><span class="p">(</span><span class="n">x</span> <span class="o">&</span> <span class="n">y</span><span class="p">)</span>
</pre></div>
</body></html></example>
<p>The tactic <tt>smt</tt> wraps the main solver in Z3 as a tactic.</p>
<example pref="tactic.8"><html><body>
<div class="highlight"><pre><span class="n">x</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="n">Ints</span><span class="p">(</span><span class="s">'x y'</span><span class="p">)</span>
<span class="n">s</span> <span class="o">=</span> <span class="n">Tactic</span><span class="p">(</span><span class="s">'smt'</span><span class="p">)</span><span class="o">.</span><span class="n">solver</span><span class="p">()</span>
<span class="n">s</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">x</span> <span class="o">></span> <span class="n">y</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span>
<span class="k">print</span> <span class="n">s</span><span class="o">.</span><span class="n">check</span><span class="p">()</span>
<span class="k">print</span> <span class="n">s</span><span class="o">.</span><span class="n">model</span><span class="p">()</span>
</pre></div>
</body></html></example>
<p>Now, we show how to implement a solver for integer arithmetic using SAT. The solver is complete
only for problems where every variable has a lower and upper bound.
</p>
<example pref="tactic.9"><html><body>
<div class="highlight"><pre><span class="n">s</span> <span class="o">=</span> <span class="n">Then</span><span class="p">(</span><span class="n">With</span><span class="p">(</span><span class="s">'simplify'</span><span class="p">,</span> <span class="n">arith_lhs</span><span class="o">=</span><span class="bp">True</span><span class="p">,</span> <span class="n">som</span><span class="o">=</span><span class="bp">True</span><span class="p">),</span>
<span class="s">'normalize-bounds'</span><span class="p">,</span> <span class="s">'lia2pb'</span><span class="p">,</span> <span class="s">'pb2bv'</span><span class="p">,</span>
<span class="s">'bit-blast'</span><span class="p">,</span> <span class="s">'sat'</span><span class="p">)</span><span class="o">.</span><span class="n">solver</span><span class="p">()</span>
<span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">z</span> <span class="o">=</span> <span class="n">Ints</span><span class="p">(</span><span class="s">'x y z'</span><span class="p">)</span>
<span class="n">solve_using</span><span class="p">(</span><span class="n">s</span><span class="p">,</span>
<span class="n">x</span> <span class="o">></span> <span class="mi">0</span><span class="p">,</span> <span class="n">x</span> <span class="o"><</span> <span class="mi">10</span><span class="p">,</span>
<span class="n">y</span> <span class="o">></span> <span class="mi">0</span><span class="p">,</span> <span class="n">y</span> <span class="o"><</span> <span class="mi">10</span><span class="p">,</span>
<span class="n">z</span> <span class="o">></span> <span class="mi">0</span><span class="p">,</span> <span class="n">z</span> <span class="o"><</span> <span class="mi">10</span><span class="p">,</span>
<span class="mi">3</span><span class="o">*</span><span class="n">y</span> <span class="o">+</span> <span class="mi">2</span><span class="o">*</span><span class="n">x</span> <span class="o">==</span> <span class="n">z</span><span class="p">)</span>
<span class="c"># It fails on the next example (it is unbounded)</span>
<span class="n">s</span><span class="o">.</span><span class="n">reset</span><span class="p">()</span>
<span class="n">solve_using</span><span class="p">(</span><span class="n">s</span><span class="p">,</span> <span class="mi">3</span><span class="o">*</span><span class="n">y</span> <span class="o">+</span> <span class="mi">2</span><span class="o">*</span><span class="n">x</span> <span class="o">==</span> <span class="n">z</span><span class="p">)</span>
</pre></div>
</body></html></example>
<p>
Tactics can be combined with solvers. For example, we can apply a tactic to a goal, produced a set of subgoals,
then select one of the subgoals and solve it using a solver. The next example demonstrates how to do that, and how to
use model converters to convert a model for a subgoal into a model for the original goal.
</p>
<example pref="tactic.10"><html><body>
<div class="highlight"><pre><span class="n">t</span> <span class="o">=</span> <span class="n">Then</span><span class="p">(</span><span class="s">'simplify'</span><span class="p">,</span>
<span class="s">'normalize-bounds'</span><span class="p">,</span>
<span class="s">'solve-eqs'</span><span class="p">)</span>
<span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">z</span> <span class="o">=</span> <span class="n">Ints</span><span class="p">(</span><span class="s">'x y z'</span><span class="p">)</span>
<span class="n">g</span> <span class="o">=</span> <span class="n">Goal</span><span class="p">()</span>
<span class="n">g</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">x</span> <span class="o">></span> <span class="mi">10</span><span class="p">,</span> <span class="n">y</span> <span class="o">==</span> <span class="n">x</span> <span class="o">+</span> <span class="mi">3</span><span class="p">,</span> <span class="n">z</span> <span class="o">></span> <span class="n">y</span><span class="p">)</span>
<span class="n">r</span> <span class="o">=</span> <span class="n">t</span><span class="p">(</span><span class="n">g</span><span class="p">)</span>
<span class="c"># r contains only one subgoal</span>
<span class="k">print</span> <span class="n">r</span>
<span class="n">s</span> <span class="o">=</span> <span class="n">Solver</span><span class="p">()</span>
<span class="n">s</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">r</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
<span class="k">print</span> <span class="n">s</span><span class="o">.</span><span class="n">check</span><span class="p">()</span>
<span class="c"># Model for the subgoal</span>
<span class="k">print</span> <span class="n">s</span><span class="o">.</span><span class="n">model</span><span class="p">()</span>
<span class="c"># Model for the original goal</span>
<span class="k">print</span> <span class="n">r</span><span class="o">.</span><span class="n">convert_model</span><span class="p">(</span><span class="n">s</span><span class="o">.</span><span class="n">model</span><span class="p">())</span>
</pre></div>
</body></html></example>
<h2>Probes</h2>
<p>
<b>Probes</b> (aka formula measures) are evaluated over goals.
Boolean expressions over them can be built using relational operators and Boolean connectives.
The tactic <tt>FailIf(cond)</tt> fails if the given goal does not satisfy the condition <tt>cond</tt>.
Many numeric and Boolean measures are available in Z3Py. The command <tt>describe_probes()</tt> provides the list of
all built-in probes.
</p>
<example pref="probe.1"><html><body>
<div class="highlight"><pre><span class="n">describe_probes</span><span class="p">()</span>
</pre></div>
</body></html></example>
<p>In the following example, we build a simple tactic using <tt>FailIf</tt>. It also shows that a probe can be applied directly
to a goal.</p>
<example pref="probe.2"><html><body>
<div class="highlight"><pre><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">z</span> <span class="o">=</span> <span class="n">Reals</span><span class="p">(</span><span class="s">'x y z'</span><span class="p">)</span>
<span class="n">g</span> <span class="o">=</span> <span class="n">Goal</span><span class="p">()</span>
<span class="n">g</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">x</span> <span class="o">+</span> <span class="n">y</span> <span class="o">+</span> <span class="n">z</span> <span class="o">></span> <span class="mi">0</span><span class="p">)</span>
<span class="n">p</span> <span class="o">=</span> <span class="n">Probe</span><span class="p">(</span><span class="s">'num-consts'</span><span class="p">)</span>
<span class="k">print</span> <span class="s">"num-consts:"</span><span class="p">,</span> <span class="n">p</span><span class="p">(</span><span class="n">g</span><span class="p">)</span>
<span class="n">t</span> <span class="o">=</span> <span class="n">FailIf</span><span class="p">(</span><span class="n">p</span> <span class="o">></span> <span class="mi">2</span><span class="p">)</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">t</span><span class="p">(</span><span class="n">g</span><span class="p">)</span>
<span class="k">except</span> <span class="n">Z3Exception</span><span class="p">:</span>
<span class="k">print</span> <span class="s">"tactic failed"</span>
<span class="k">print</span> <span class="s">"trying again..."</span>
<span class="n">g</span> <span class="o">=</span> <span class="n">Goal</span><span class="p">()</span>
<span class="n">g</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">x</span> <span class="o">+</span> <span class="n">y</span> <span class="o">></span> <span class="mi">0</span><span class="p">)</span>
<span class="k">print</span> <span class="n">t</span><span class="p">(</span><span class="n">g</span><span class="p">)</span>
</pre></div>
</body></html></example>
<p>Z3Py also provides the combinator (tactical) <tt>If(p, t1, t2)</tt> which is a shorthand for:</p>
<pre>OrElse(Then(FailIf(Not(p)), t1), t2)</pre>
<p>The combinator <tt>When(p, t)</tt> is a shorthand for:</p>
<pre>If(p, t, 'skip')</pre>
<p>The tactic <tt>skip</tt> just returns the input goal.
The following example demonstrates how to use the <tt>If</tt> combinator.</p>
<example pref="probe.3"><html><body>
<div class="highlight"><pre><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">z</span> <span class="o">=</span> <span class="n">Reals</span><span class="p">(</span><span class="s">'x y z'</span><span class="p">)</span>
<span class="n">g</span> <span class="o">=</span> <span class="n">Goal</span><span class="p">()</span>
<span class="n">g</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">x</span><span class="o">**</span><span class="mi">2</span> <span class="o">-</span> <span class="n">y</span><span class="o">**</span><span class="mi">2</span> <span class="o">>=</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">p</span> <span class="o">=</span> <span class="n">Probe</span><span class="p">(</span><span class="s">'num-consts'</span><span class="p">)</span>
<span class="n">t</span> <span class="o">=</span> <span class="n">If</span><span class="p">(</span><span class="n">p</span> <span class="o">></span> <span class="mi">2</span><span class="p">,</span> <span class="s">'simplify'</span><span class="p">,</span> <span class="s">'factor'</span><span class="p">)</span>
<span class="k">print</span> <span class="n">t</span><span class="p">(</span><span class="n">g</span><span class="p">)</span>
<span class="n">g</span> <span class="o">=</span> <span class="n">Goal</span><span class="p">()</span>
<span class="n">g</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">x</span> <span class="o">+</span> <span class="n">x</span> <span class="o">+</span> <span class="n">y</span> <span class="o">+</span> <span class="n">z</span> <span class="o">>=</span> <span class="mi">0</span><span class="p">,</span> <span class="n">x</span><span class="o">**</span><span class="mi">2</span> <span class="o">-</span> <span class="n">y</span><span class="o">**</span><span class="mi">2</span> <span class="o">>=</span> <span class="mi">0</span><span class="p">)</span>
<span class="k">print</span> <span class="n">t</span><span class="p">(</span><span class="n">g</span><span class="p">)</span>
</pre></div>
</body></html></example>
</body>
</html>