-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_intensities.py
419 lines (345 loc) · 18.2 KB
/
get_intensities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
#!/usr/bin/env python3
# FRAGMENT INTESITIES MS ANNIKA
# 2023 (c) Micha Johannes Birklbauer
# https://github.com/michabirklbauer/
# version tracking
__version = "1.1.0"
__date = "2023-03-23"
# REQUIREMENTS
# pip install pandas
# pip install openpyxl
# pip install tqdm
# pip install pyteomics
##### PARAMETERS #####
SPECTRA_FILE = "20220215_Eclipse_LC6_PepMap50cm-cartridge_mainlib_DSSO_3CV_stepHCD_OT_001.mgf"
CSMS_FILE = "CSMs_unfiltered.xlsx"
DOUBLETS_FILE = "CrosslinkDoublets.txt"
MODIFICATIONS = \
{"Oxidation": [15.994915],
"Carbamidomethyl": [57.021464],
"DSSO": [54.01056, 85.98264, 103.99320]}
ION_TYPES = ("b", "y")
MAX_CHARGE = 4
MATCH_TOLERANCE = 0.02
DOUBLET_IDENTIFICATION_MODE = "All"
# DOUBLET_IDENTIFICATION_MODE = "Evidence"
# DOUBLET_IDENTIFICATION_MODE = "Indication"
######################
# import packages
import os
import pandas as pd
from tqdm import tqdm
from pyteomics import mgf, mass
from typing import Dict
from typing import List
from typing import Tuple
from typing import Set
import warnings
# reading spectra
def read_spectra(filename: str) -> Dict[int, Dict]:
"""
Returns a dictionary that maps scan numbers to spectra:
Dict[int -> Dict["precursor" -> float
"charge" -> int
"peaks" -> Dict[m/z -> intensity]]
"""
result_dict = dict()
with mgf.read(filename) as reader:
for spectrum in reader:
scan_nr = int(spectrum["params"]["title"].split("scan=")[1].strip("\""))
spectrum_dict = dict()
spectrum_dict["precursor"] = spectrum["params"]["pepmass"]
spectrum_dict["charge"] = spectrum["params"]["charge"]
peaks = dict()
for i, mz in enumerate(spectrum["m/z array"]):
peaks[mz] = spectrum["intensity array"][i]
spectrum_dict["peaks"] = peaks
result_dict[scan_nr] = spectrum_dict
reader.close()
return result_dict
def read_doublets(filename: str) -> Dict[int, Dict]:
"""
Returns a dictionary that maps scan numbers to doublets:
Dict[int -> Dict["alpha_light" -> set(float)
"alpha_heavy" -> set(float)
"beta_light" -> set(float)
"beta_heavy" -> set(float)]
"""
proton_mass = 1.007276466812
result_dict = dict()
doublet_df = pd.read_csv(filename, sep = "\t")
for i, row in tqdm(doublet_df.iterrows(), total = doublet_df.shape[0], desc = "INFO: Progress bar - Reading doublet file"):
if DOUBLET_IDENTIFICATION_MODE != "All":
if DOUBLET_IDENTIFICATION_MODE not in row["Identification Mode"]:
continue
alpha_doublets = row["Complete Alpha Doublet"]
uncharged_aL, uncharged_aH = [float(m.strip()) for m in alpha_doublets.split("|")]
mz_aL = row["m/z Alpha Light"]
mz_aH = row["m/z Alpha Heavy"]
beta_doublets = row["Complete Beta Doublet"]
uncharged_bL, uncharged_bH = [float(m.strip()) for m in beta_doublets.split("|")]
mz_bL = row["m/z Beta Light"]
mz_bH = row["m/z Beta Heavy"]
scan_nr = row["Scan number"]
# alpha light possible m/z
aL_masses = set()
if mz_aL != 0:
aL_masses.add(mz_aL)
for charge in range(1, MAX_CHARGE + 1):
aL_masses.add((uncharged_aL + charge * proton_mass) / charge)
# alpha heavy possible m/z
aH_masses = set()
if mz_aH != 0:
aH_masses.add(mz_aH)
for charge in range(1, MAX_CHARGE + 1):
aH_masses.add((uncharged_aH + charge * proton_mass) / charge)
# beta light possible m/z
bL_masses = set()
if mz_bL != 0:
bL_masses.add(mz_bL)
for charge in range(1, MAX_CHARGE + 1):
bL_masses.add((uncharged_bL + charge * proton_mass) / charge)
# beta heavy possible m/z
bH_masses = set()
if mz_bH != 0:
bH_masses.add(mz_bH)
for charge in range(1, MAX_CHARGE + 1):
bH_masses.add((uncharged_bH + charge * proton_mass) / charge)
if scan_nr not in result_dict:
result_dict[scan_nr] = {"alpha_light": aL_masses,
"alpha_heavy": aH_masses,
"beta_light": bL_masses,
"beta_heavy": bH_masses}
else:
result_dict[scan_nr]["alpha_light"].update(aL_masses)
result_dict[scan_nr]["alpha_heavy"].update(aH_masses)
result_dict[scan_nr]["beta_light"].update(bL_masses)
result_dict[scan_nr]["beta_heavy"].update(bH_masses)
return result_dict
# generate a position to modification mass mapping
def generate_modifications_dict(peptide: str, modification_str: str) -> Dict[int, List[float]]:
"""
Returns a mapping of peptide positions (0 based) to possible modification masses.
modification_str is the modification string as returned by MS Annika e.g. K5(DSSO);M7(Oxidation)
the modification in braces has to be defined in MODIFICATIONS
"""
modifications_dict = dict()
modifications = modification_str.split(";")
for modification in modifications:
# remove possible white spaces
modification = modification.strip()
# get modified amino acid and modification position
aa_and_pos = modification.split("(")[0]
# get modification type
mod = modification.split("(")[1].rstrip(")")
if aa_and_pos == "Nterm":
pos = -1
elif aa_and_pos == "Cterm":
pos = len(peptide)
else:
pos = int(aa_and_pos[1:]) - 1
if mod in MODIFICATIONS:
modifications_dict[pos] = MODIFICATIONS[mod]
else:
warnings.warn("Modification '" + mod + "' not found!")
return modifications_dict
# generate all theoretical fragments
# adapted from https://pyteomics.readthedocs.io/en/latest/examples/example_msms.html
def generate_theoretical_fragments(peptide: str, modifications: Dict[int, List[float]], ion_types: Tuple[str] = ("b", "y"), max_charge: int = 1) -> Dict[float, str]:
"""
Generates a set of theoretical fragment ion masses of the specified peptide with the modifications.
"""
fragments = dict()
for i in range(1, len(peptide)):
for ion_type in ion_types:
for charge in range(1, max_charge + 1):
if ion_type[0] in "abc":
frag_mass = mass.fast_mass(peptide[:i], ion_type = ion_type, charge = charge)
mass_possibilites = set()
for mod_pos in modifications.keys():
# if the modification is within the fragment:
if mod_pos < i:
# add the modification mass / charge if its a normal modification
if len(modifications[mod_pos]) == 1:
frag_mass += modifications[mod_pos][0] / charge
else:
# if it's a crosslinking modification we add the crosslinker fragment masses
# to a set of possible modification mass additions to generate a fragment mass
# for every crosslinker fragment
for modification in modifications[mod_pos]:
mass_possibilites.add(modification / charge)
# we add all possible fragment masses including all crosslinker fragment possibilites
if len(mass_possibilites) == 0:
if frag_mass not in fragments:
fragments[frag_mass] = ion_type + str(i) + "+" + str(charge) + ": " + peptide[:i]
else:
for mass_possibility in mass_possibilites:
if frag_mass + mass_possibility not in fragments:
fragments[frag_mass + mass_possibility] = ion_type + str(i) + "+" + str(charge) + ": " + peptide[:i]
else:
frag_mass = mass.fast_mass(peptide[i:], ion_type = ion_type, charge = charge)
mass_possibilites = set()
for mod_pos in modifications.keys():
if mod_pos >= i:
if len(modifications[mod_pos]) == 1:
frag_mass += modifications[mod_pos][0] / charge
else:
for modification in modifications[mod_pos]:
mass_possibilites.add(modification / charge)
if len(mass_possibilites) == 0:
if frag_mass not in fragments:
fragments[frag_mass] = ion_type + str(len(peptide) - i) + "+" + str(charge) + ": " + peptide[i:]
else:
for mass_possibility in mass_possibilites:
if frag_mass + mass_possibility not in fragments:
fragments[frag_mass + mass_possibility] = ion_type + str(len(peptide) - i) + "+" + str(charge) + ": " + peptide[i:]
return fragments
def get_intensities(row: pd.Series, alpha: bool, spectra: Dict[int, Dict]) -> Tuple[float, Dict[float, str], Dict[float, str]]:
"""
Returns the sum of intensities of the matched fragment ions of an identified peptide, the matched ions and all potential theoretical ions.
"""
scan_nr = row["First Scan"]
if alpha:
sequence = row["Sequence A"]
modifications = row["Modifications A"]
else:
sequence = row["Sequence B"]
modifications = row["Modifications B"]
spectrum = spectra[scan_nr]
modifications_processed = generate_modifications_dict(sequence, modifications)
theoretical_fragments = generate_theoretical_fragments(sequence, modifications_processed, ion_types = ION_TYPES, max_charge = MAX_CHARGE)
total_intensity = 0
matched_fragments = dict()
for peak_mz in spectrum["peaks"].keys():
for fragment in theoretical_fragments.keys():
if round(peak_mz, 4) < round(fragment + MATCH_TOLERANCE, 4) and round(peak_mz, 4) > round(fragment - MATCH_TOLERANCE, 4):
total_intensity += spectrum["peaks"][peak_mz]
matched_fragments[peak_mz] = theoretical_fragments[fragment]
break
return total_intensity, matched_fragments, theoretical_fragments
def get_doublets(row: pd.Series, spectra: Dict[int, Dict], doublets: Dict[int, Dict]) -> Tuple[float,
float,
float,
float,
List[Tuple],
List[Tuple],
List[Tuple],
List[Tuple]]:
"""
Returns the sum of intensities of alpha light doublet peaks, alpha heavy doublet peaks, beta light doublet peaks, beta heavy doublet peaks (index 0 - 3).
Returns the peaks (Tuple (m/z, intensity)) of alpha light doublet peaks, alpha heavy doublet peaks, beta light doublet peaks, beta heavy doublet peaks (index 4 - 7).
"""
scan_nr = row["First Scan"]
spectrum = spectra[scan_nr]
aL_doublets = []
aH_doublets = []
bL_doublets = []
bH_doublets = []
if scan_nr not in doublets:
return 0, 0, 0, 0, [], [], [], []
else:
for peak_mz in spectrum["peaks"].keys():
for doublet_mz in doublets[scan_nr]["alpha_light"]:
if round(peak_mz, 4) < round(doublet_mz + MATCH_TOLERANCE, 4) and round(peak_mz, 4) > round(doublet_mz - MATCH_TOLERANCE, 4):
aL_doublets.append((peak_mz, spectrum["peaks"][peak_mz]))
break
for doublet_mz in doublets[scan_nr]["alpha_heavy"]:
if round(peak_mz, 4) < round(doublet_mz + MATCH_TOLERANCE, 4) and round(peak_mz, 4) > round(doublet_mz - MATCH_TOLERANCE, 4):
aH_doublets.append((peak_mz, spectrum["peaks"][peak_mz]))
break
for doublet_mz in doublets[scan_nr]["beta_light"]:
if round(peak_mz, 4) < round(doublet_mz + MATCH_TOLERANCE, 4) and round(peak_mz, 4) > round(doublet_mz - MATCH_TOLERANCE, 4):
bL_doublets.append((peak_mz, spectrum["peaks"][peak_mz]))
break
for doublet_mz in doublets[scan_nr]["beta_heavy"]:
if round(peak_mz, 4) < round(doublet_mz + MATCH_TOLERANCE, 4) and round(peak_mz, 4) > round(doublet_mz - MATCH_TOLERANCE, 4):
bH_doublets.append((peak_mz, spectrum["peaks"][peak_mz]))
break
return sum([p[1] for p in aL_doublets]), \
sum([p[1] for p in aH_doublets]), \
sum([p[1] for p in bL_doublets]), \
sum([p[1] for p in bH_doublets]), \
aL_doublets, aH_doublets, bL_doublets, bH_doublets
def get_total_fragment_intensity(row: pd.Series) -> float:
"""
Returns the total intensity of fragment ions in the spectrum.
"""
if row["Sequence A"].strip() == row["Sequence B"].strip():
return (row["Fragment Intensities A (Sum)"] + row["Fragment Intensities B (Sum)"]) / 2
else:
return row["Fragment Intensities A (Sum)"] + row["Fragment Intensities B (Sum)"]
def get_total_doublet_intensity(row: pd.Series) -> float:
"""
Returns the total intensity of doublet peaks in the spectrum.
"""
if row["Sequence A"].strip() == row["Sequence B"].strip():
return (row["Alpha Doublet Intensities Total"] + row["Beta Doublet Intensities Total"]) / 2
else:
return row["Alpha Doublet Intensities Total"] + row["Beta Doublet Intensities Total"]
def get_spectrum_intensity(row: pd.Series, spectra: Dict[int, Dict]) -> float:
"""
Returns the total intensity of all peaks in a spectrum.
"""
scan_nr = row["First Scan"]
spectrum = spectra[scan_nr]
total_intensity = 0
for peak_mz in spectrum["peaks"]:
total_intensity += spectrum["peaks"][peak_mz]
return total_intensity
def main() -> pd.DataFrame:
print("INFO: Running CSM annotation with input files:\nSpectra: " + SPECTRA_FILE + "\nCSMs: " + CSMS_FILE + "\nDoublets: " + DOUBLETS_FILE)
print("INFO: Using the following modifications:")
print(MODIFICATIONS)
print("INFO: Using the following ion types:")
print(ION_TYPES)
print("INFO: Using the following charge states:")
print([i for i in range(1, MAX_CHARGE + 1)])
print("INFO: Using a match tolerance of: " + str(MATCH_TOLERANCE) + " Da")
print("INFO: Starting annotation process...")
print("INFO: Reading spectra...")
spectra = read_spectra(SPECTRA_FILE)
print("INFO: Done reading spectra!")
print("INFO: Reading CSMs...")
csms = pd.read_excel(CSMS_FILE)
print("INFO: Done reading CSMs! Starting fragment ion annotation...")
tqdm.pandas(desc = "INFO: Progress bar - Annotating alpha peptide fragments")
csms[["Fragment Intensities A (Sum)", "Matched Ions A", "Theoretical Ions A"]] = \
csms.progress_apply(lambda row: get_intensities(row, True, spectra),
axis = 1,
result_type = "expand")
print("INFO: Done processing alpha peptides!")
tqdm.pandas(desc = "INFO: Progress bar - Annotating beta peptide fragments")
csms[["Fragment Intensities B (Sum)", "Matched Ions B", "Theoretical Ions B"]] = \
csms.progress_apply(lambda row: get_intensities(row, False, spectra),
axis = 1,
result_type = "expand")
print("INFO: Done processing beta peptides!")
csms["Fragment Intensities Total"] = csms.apply(lambda row: get_total_fragment_intensity(row), axis = 1)
print("INFO: Done annotating fragment ions!")
if DOUBLETS_FILE is not None and os.path.isfile(DOUBLETS_FILE):
print("INFO: Doublet file was provided! Reading doublet file...")
doublets = read_doublets(DOUBLETS_FILE)
print("INFO: Done reading doublet file! Starting doublet annotation...")
tqdm.pandas(desc = "INFO: Progress bar - Annotating doublets")
csms[["Alpha Light Intensities (Sum)", "Alpha Heavy Intensities (Sum)", "Beta Light Intensities (Sum)", "Beta Heavy Intensities (Sum)",
"Alpha Light Peaks", "Alpha Heavy Peaks", "Beta Light Peaks", "Beta Heavy Peaks"]] = \
csms.progress_apply(lambda row: get_doublets(row, spectra, doublets),
axis = 1,
result_type = "expand")
print("INFO: Done annotating doublets! Calculating intensities...")
csms["Alpha Doublet Intensities Total"] = csms.apply(lambda row: row["Alpha Light Intensities (Sum)"] + row["Alpha Heavy Intensities (Sum)"], axis = 1)
csms["Beta Doublet Intensities Total"] = csms.apply(lambda row: row["Beta Light Intensities (Sum)"] + row["Beta Heavy Intensities (Sum)"], axis = 1)
csms["Doublet Intensities Total"] = csms.apply(lambda row: get_total_doublet_intensity(row), axis = 1)
print("INFO: Done calculating doublet intensities!")
else:
print("INFO: Doublet file was not provided or not found! Skipping doublet annotation.")
print("INFO: Calculating total spectrum intensities...")
tqdm.pandas(desc = "INFO: Progress bar - Intensity per spectrum")
csms["Total Intensity in Spectrum"] = csms.progress_apply(lambda row: get_spectrum_intensity(row, spectra), axis = 1)
print("INFO: Done calculating total spectrum intensities!")
csms.to_excel(".".join(CSMS_FILE.split(".")[:-1]) + "_with_intensities.xlsx")
print("SUCCESS: Output file generated as '" + ".".join(CSMS_FILE.split(".")[:-1]) + "_with_intensities.xlsx" + "'!")
return csms
if __name__ == "__main__":
main()