-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_composition.py
161 lines (133 loc) · 6.35 KB
/
train_composition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# ========================================================
# Compositional GAN
# Train different components of the paired/unpaired models
# By Samaneh Azadi
# ========================================================
import time
from options.train_options import TrainOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
from util.visualizer import Visualizer
from models.landmark import landmarkLoader
opt = TrainOptions().parse()
opt.phase = 'train'
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
print('#training images = %d' % dataset_size)
model = create_model(opt)
visualizer = Visualizer(opt)
print('Train the STN models')
# Only for the unpaired case
if opt.dataset_mode=='comp_decomp_unaligned' and opt.niterSTN:
opt.isPretrain = False
visualizer = Visualizer(opt)
total_steps = 0
for epoch in range(opt.epoch_count, opt.niterSTN + 1):
epoch_start_time = time.time()
epoch_iter = 0
for i, data in enumerate(dataset):
iter_start_time = time.time()
visualizer.reset()
total_steps += opt.batchSize
epoch_iter += opt.batchSize
model.set_input(data)
model.optimize_parameters_STN()
if total_steps % opt.display_freq == 0:
save_result = total_steps % opt.update_html_freq == 0
visualizer.display_current_results(model.get_current_visuals_STN(), total_steps, save_result,opt.update_html_freq,n_latest=opt.n_latest)
if total_steps % opt.print_freq == 0:
errors = model.get_current_errors()
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, errors, t)
if opt.display_id > 0:
visualizer.plot_current_errors(epoch, float(epoch_iter)/dataset_size, opt, errors)
if total_steps % opt.save_latest_freq == 0:
print('saving the latest model (epoch %d, total_steps %d)' %
(epoch, total_steps))
model.save('latest')
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' %
(epoch, total_steps))
model.save(epoch, STN_pretrain=True)
print('Train the inpainting networks only')
# Only for the unpaired case
if opt.dataset_mode=='comp_decomp_unaligned' and opt.niterCompletion:
opt.isPretrain = False
visualizer = Visualizer(opt)
total_steps = 0
for epoch in range(opt.epoch_count, opt.niterCompletion + 1):
epoch_start_time = time.time()
epoch_iter = 0
for i, data in enumerate(dataset):
iter_start_time = time.time()
visualizer.reset()
total_steps += opt.batchSize
epoch_iter += opt.batchSize
model.set_input(data)
model.optimize_parameters_completion(total_steps)
if total_steps % opt.display_freq == 0:
save_result = total_steps % opt.update_html_freq == 0
visualizer.display_current_results(model.get_current_visuals_completion(), total_steps, save_result,opt.update_html_freq,n_latest=opt.n_latest)
if total_steps % opt.print_freq == 0:
errors = model.get_current_errors()
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, errors, t)
if opt.display_id > 0:
visualizer.plot_current_errors(epoch, float(epoch_iter)/dataset_size, opt, errors)
if total_steps % opt.save_latest_freq == 0:
print('saving the latest model (epoch %d, total_steps %d)' %
(epoch, total_steps))
model.save('latest')
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' %
(epoch, total_steps))
model.save(epoch, compl_pretrain=True)
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
opt.isPretrain = False
visualizer = Visualizer(opt)
total_steps = 0
print('start training end to end')
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
epoch_iter = 0
for i, data in enumerate(dataset):
iter_start_time = time.time()
visualizer.reset()
total_steps += opt.batchSize
epoch_iter += opt.batchSize
model.set_input(data)
model.set_input_landmark(data)
#print("set_input_landmark",model.set_input_landmark(data))
#print("set_input",model.set_input(data))
if opt.dataset_mode=='comp_decomp_unaligned':
# model.optimize_parameters(total_steps, epoch)
model.optimize_parameters(total_steps)
else:
model.optimize_parameters(total_steps, epoch)
if total_steps % opt.display_freq == 0:
save_result = total_steps % opt.update_html_freq == 0
if opt.dataset_mode=='comp_decomp_unaligned':
visualizer.display_current_results(model.get_current_visuals_A_segment(), total_steps, save_result,opt.update_html_freq,n_latest=opt.n_latest)
else:
visualizer.display_current_results(model.get_current_visuals(), total_steps, save_result,opt.update_html_freq,n_latest=opt.n_latest)
if total_steps % opt.print_freq == 0:
errors = model.get_current_errors()
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, errors, t)
if opt.display_id > 0:
visualizer.plot_current_errors(epoch, float(epoch_iter)/dataset_size, opt, errors)
if total_steps % opt.save_latest_freq == 0:
print('saving the latest model (epoch %d, total_steps %d)' %
(epoch, total_steps))
model.save('latest')
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' %
(epoch, total_steps))
model.save('latest')
model.save(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
model.update_learning_rate()