Skip to content

Latest commit

 

History

History
243 lines (163 loc) · 6.59 KB

README.md

File metadata and controls

243 lines (163 loc) · 6.59 KB

tx2_fcnn_node

Real-time Vision-based Depth Reconstruction with NVidia Jetson for Monocular SLAM

ROS node for real-time FCNN-based depth reconstruction (as in paper). The platforms are NVidia Jetson TX2 and x86_64 PC with GNU/Linux (aarch64 should work as well, but not tested).

Publications

If you use this work in an academic context, please cite the following publication(s):

@conference{Bokovoy2019,
  author={Bokovoy, A. and Muravyev, K. and Yakovlev, K.},
  title={Real-time vision-based depth reconstruction with NVIDIA jetson},
  journal={2019 European Conference on Mobile Robots, ECMR 2019 - Proceedings},
  year={2019},
  doi={10.1109/ECMR.2019.8870936},
  art_number={8870936},
  url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074429057&doi=10.1109%2fECMR.2019.8870936&partnerID=40&md5=b87bcba0803147012ee1062f867cc4ef},
  document_type={Conference Paper},
  source={Scopus},
}

System requirements

  • Linux-based system with aarch64 or x86_64 architecture or NVidia Jetson TX2.
  • NVidia graphic card.

Pre-requesites

  1. ROS Kinetic or higher.
  2. TensorRT 5.0 or higher.
  3. CUDA 9.0 or higher
  4. CUDNN + CuBLAS
  5. GStreamer-1.0
  6. glib2.0

Optional:

  • RTAB-MAP

Compile

Assuming you already have ROS and CUDA related tools installed

  1. Install remaining pre-requesites:
$ sudo apt-get update
$ sudo apt-get install -y libqt4-dev qt4-dev-tools \ 
       libglew-dev glew-utils libgstreamer1.0-dev \ 
       libgstreamer-plugins-base1.0-dev libglib2.0-dev \
       libgstreamer-plugins-good
$ sudo apt-get install -y libopencv-calib3d-dev libopencv-dev 
  1. Navigate to your catkin workspace and clone the repository:
$ git clone https://github.com/CnnDepth/tx2_fcnn_node.git
$ cd tx2_fcnn_node && git submodule update --init --recursive
  1. Build the node:

Navigate to catkin workspace folder.

a) On jetson:

$ catkin_make

b) On x86_64 PC

$ catkin_make --cmake-args -DPATH_TO_TENSORRT_LIB=/usr/lib/x86_64-linux-gnu \ 
              -DPATH_TO_TENSORRT_INCLUDE=/usr/include -DPATH_TO_CUDNN=/usr/lib/x86_64-linux-gnu \ 
              -DPATH_TO_CUBLAS=/usr/lib/x86_64-linux-gnu

Change the paths accordingly.

  1. Build the TensorRT engine

Compile engine builder.

$ catkin_make --cmake-args -DBUILD_ENGINE_BUILDER=1

Download UFF models.

$ roscd tx2_fcnn_node
$ sh ./download_models.sh

Compile the engine.

$ cd engine
$ rosrun tx2_fcnn_node fcrn_engine_builder --uff=./resnet_nonbt_shortcuts_320x240.uff --uffInput=tf/Placeholder \
  --output=tf/Reshape --height=240 --width=320 --engine=./test_engine.trt --fp16
  1. Run:
$ roslaunch tx2_fcnn_node cnn_only.launch

or with RTAB-MAP

$ roslaunch tx2_fcnn_node rtabmap_cnn.launch

Run in a container

  1. Build image:
$ cd docker
$ docker build . -t rt-ros-docker
  1. Run an image:
$ nvidia-docker run -device=/dev/video0:/dev/video0 -it --rm rt-ros-docker
  1. Create ros workspace:
$ mkdir -p catkin_ws/src && cd catkin_ws/src
$ catkin_init_workspace
$ cd ..
$ catkin_make
$ source devel/setup.bash
  1. Build tx2_fcnn_node:
$ cd src
$ git clone https://github.com/CnnDepth/tx2_fcnn_node.git
$ cd tx2_fcnn_node && git submodule update --init --recursive
$ catkin_make
  1. Run the node:
rosrun tx2_fcnn_node tx2_fcnn_node

Nodes

tx2_fcnn_node

Reads the images from camera or image topic and computes the depth map.

Subscribed Topics

Published topics

Parameters

  • input_width (int, default: 320)

    Input image width for TensorRT engine

  • input_height (int, default: 240)

    Input image height for TensorRT engine

  • use_camera (bool, default: true)

    If true - use internal camera as image source. False - use /image topic as input source.

  • camera_mode (int, default: -1)

    Only works if use_camera:=true. Sets camera device to be opened. -1 - default device.

  • camera_link (string, default: "camera_link")

    Name of camera's frame_id.

  • depth_link (string, default: "depth_link")

    Name of depth's frame_id

  • engine_name (string, default: "test_engine.trt")

    Name of the compiled TensorRT engine file, localed in "engine" folder.

  • calib_name (string, default: "tx2_camera_calib.yaml")

    Name of calibration file, obrained with camera_calib node. May be either in .yaml or .ini format.

  • input_name (string, default: "tf/Placeholder")

    Name of the input of TensorRT engine.

  • output_name (string, default: "tf/Reshape")

    Name of the output of TensorRT engine

  • mean_r (float, default: 123.0)

    R channel mean value, used during FCNN training.

  • mean_g (float, default: 115.0)

    G channel mean value, used during FCNN training.

  • mean_b (float, default: 101.0)

    B channel mean value, used during FCNN training.

Sample models

Models pre-trained on NYU Depth v2 dataset are available in http://pathplanning.ru/public/ECMR-2019/engines/. The models are stored in UFF format. They can be converted into TensorRT engines using tensorrt_samples.

Troubleshooting

Stack smashing

If you run this node on Ubuntu 16.04 or older, the node may fail to start and show Stack smashing detected log message. To fix it, remove XML.* files in Thirdparty/fcrn-inference/jetson-utils directory, and recompile the project.

Inverted image

If you run this node on Jetson, RGB and depth image may be shown inverted. To fix it, open Thirdparty/fcrn-inference/jetson-utils/camera/gstCamera.cpp file in text editor, go to lines 344-348, and change value of flipMethod constant to 0. After editing, recompile the project.