-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathextract.py
675 lines (550 loc) · 22.9 KB
/
extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
from class_Line import *
from class_Spectrum import *
from fn_spaxelSelection import *
import getopt
import sys
#Numpy
import numpy as np
#Plotting tools
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import matplotlib as mpl
#FITS manipulation
from astropy.io import fits
#Spectral lines to check for
#HAVEN'T IMPLEMENTED
LINE_H_I = [6564.61, 4862.68, 4341.68, 4102.89]
LINE_He_I = [5875.624,7065.196,7281.349,7816.136, ]
LINE_He_II = [8236.790]
LINE_C_II = [7236.420]
LINE_C_III = [4647.420,4650.250,4651.470,5695.920,]
LINE_C_IV = [5801.330, 5811.980]
LINE_N_II = [6549.86,6585.27]
LINE_O_II = [3727.092,3729.875]
LINE_O_III = [1665.85,4364.436,4932.603,4960.295,5008.240]
LINE_S_II = [4072.3,6718.29,6732.67]
LINE_Si = []
#Region around line to analyse in Angstrom
velocity_window = 20000
telluric_noise = [[5300, 5600], [8000,10000]]
trimmin = 3800
trimmax = 7500
#Default values for command line arguments
plot_spectrum = True
save_spectrum = False
normalise_spectrum = False
trim_spectrum = False
velocity_space = False
velocity_centre = LINE_H_I[0]
calc_gaussian = False
colour = 'black'
label = 'unlabelled'
redshift = 0
spectral_lines = False
b_file = ''
r_file = ''
fwhm=10000
#Load in data to manipulate
def loadFITS(filename):
'''
Reads in data from finalised WiFeS P11 file.
Can be used for any data cube where
HDU 0 is science data
HDU 1 is variance data
HDU 2 is data quality flag
Parameters
----------
filename : (str) File to read in, inclusive of file path
Returns
-------
sci : (np.array) Science data cube
var : (np.array) Variance data cube
dq : (np.array) Data quality date cube
'''
hdul = fits.open(filename)
sci = hdul[0]
var = hdul[1]
dq = hdul[2]
return sci, var, dq
#Average the image data across both WiFeS arms
def aveImage(*datacubes):
'''
Averages a data cube over all wavelengths to produce 2D image
Parameters
----------
*datacubes : (List of 3D np.array)
Science spaxels to image
Returns
-------
ave : (2D np.array)
Image of science data
'''
#Set total = 0 for array in size of image
total = np.zeros_like(datacubes[0][0])
#For each data cube to average
for cube in datacubes:
#Assert dimensions are correct
assert(cube.shape[1] == total.shape[0])
assert(cube.shape[2] == total.shape[1])
#Average the flux across wavelength axis
ave = np.mean(cube, axis=0)
#Add to total
total = np.add(total, ave)
#Make it an average instead of total count
ave = np.divide(total, len(datacubes))
return ave
#Calculate the flux values at each wavelength step, weighted by variance
def calcFlux(sci, var, save_x, save_y, sub_x, sub_y):
'''
Takes in user selected range of spaxels and averages flux for each spaxel per wavelength.
Subtracts spaxels in another user selected region for sky/host subtraction
Weights flux values by variance of spaxel (i.e. higher variance = less weight)
Parameters
----------
sci : (3D np.array)
Science data cube
var : (3D np.array)
Variance data cube
save_x, : (dict){'start':(int), 'end':(int)}
save_y Coordinates to average saved spaxels across
sub_x, : (dict){'start':(int), 'end':(int)}
sub_y Coordinates to average subtracted spaxels across
Returns
-------
fl : (2D np.array)
Spectrum of selected range
'''
#Extracts average spectrum in section to save
save_sci = sci.data[:, save_y['start']:save_y['end'], save_x['start']:save_x['end']]
save_var = var.data[:, save_y['start']:save_y['end'], save_x['start']:save_x['end']]
#Extracts average spectrum in section to subtract
sub_sci = sci.data[:, sub_y['start']:sub_y['end'], sub_x['start']:sub_x['end']]
sub_var = var.data[:, sub_y['start']:sub_y['end'], sub_x['start']:sub_x['end']]
#Calculates the weighted average spectrum across selection range
fl = [
np.average(save_sci[i], weights=np.reciprocal(save_var[i])) -
np.average(sub_sci[i], weights=np.reciprocal(sub_var[i]))
for i in range(save_sci.shape[0])
]
# fl = [
# np.sum(save_sci[i]) -
# np.sum(sub_sci[i])
# for i in range(save_sci.shape[0])
# ]
return fl
#Calculate the variance for each flux value
def calcVar(var, save_x, save_y, sub_x, sub_y):
'''
Calculates variance in flux values across selected region
Parameters
----------
var : (3D np.array)
Variance data cube
save_x, : (dict){'start':(int), 'end':(int)}
save_y Coordinates to average saved spaxels across
sub_x, : (dict){'start':(int), 'end':(int)}
sub_y Coordinates to average subtracted spaxels across
Returns
-------
err : (2D np.array)
Added error of spaxels in selected ranges.
'''
#Cut out relevant regions
save_var = var.data[:, save_y['start']:save_y['end'], save_x['start']:save_x['end']]
sub_var = var.data[:, sub_y['start']:sub_y['end'], sub_x['start']:sub_x['end']]
#Calculate standard error of weighted mean
save_err = np.reciprocal(np.sum(np.reciprocal(save_var), axis=(1,2)))
sub_err = np.reciprocal(np.sum(np.reciprocal(sub_var), axis=(1,2)))
#Add errors of two sections
return save_err + sub_err
#Calculate an array of each wavelength
def calcWavelength(sci):
'''
Calculates an array of wavelengths for each flux value to correspond to,
since not included by default in data
Parameters
----------
sci : (3D np.array)
Science data cube
Returns
-------
wl : (2D np.array)
Array for each wavelength in data cube
'''
initial = sci.header['CRVAL3']
step = sci.header['CDELT3']
num = len(sci.data)
final = initial + step * num
return np.arange(initial, final, step)
#Combine two spectra (e.g. red and blue arms of WiFeS)
def combineSpectra(b_fl, b_var, b_wl, r_fl, r_var, r_wl):
'''
Combines blue and red arms of WiFeS spectra. Calculates an overlap region, then
adjusts each spectrum to meet in middle.
Parameters
----------
b_fl, : (1D np.array)
r_fl Flux values for each arm
b_var, : (1D np.array)
r_var Variance values for each arm
b_wl, : (1D np.array)
r_wl Wavelength values for each arm
Returns
-------
comb_fl : (1D np.array)
Combined flux array
comb_var : (1D np.array)
Combined variance array
comb_wl : (1D np.array)
Combined wavelength array
'''
#Determine what extreme ends of filters wavelengths are
max_b = max(b_wl)
min_r = min(r_wl)
#Determine how many entries overlap in both
b_overlap = len([i for i in b_wl if i > min_r])
r_overlap = len([i for i in r_wl if i < max_b])
#Calculate the average flux within this range
b_ave = np.mean(b_fl[-b_overlap:])
r_ave = np.mean(r_fl[:r_overlap])
#Calculate the difference between the two in the overlapping region
r_offset = (b_ave - r_ave)/2
b_offset = (r_ave - b_ave)/2
############################################
#r_offset = 0
#b_offset = 0
############################################
#Shift spectra to meet at average
r_fl = [x + r_offset for x in r_fl]
b_fl = [x + b_offset for x in b_fl]
#Combine lists
comb_wl = np.concatenate((b_wl, r_wl))
comb_var= np.concatenate((b_var, r_var))
comb_fl = np.concatenate((b_fl, r_fl))
#Zip them together
zipped = list(zip(comb_wl, comb_fl, comb_var))
#Sort according to wavelength
zipped.sort(key = lambda x: x[0])
#Recreate combined lists, now sorted to wavelength
unzipped = [list(x) for x in zip(*zipped)]
comb_wl = unzipped[0]
comb_fl = unzipped[1]
comb_var= unzipped[2]
return comb_fl, comb_var, comb_wl
#Takes in blue and red filenames, outputs Spectrum object
def processData(blue_file, red_file, z=0, c='black', mjd_t_peak=0, instrument="WiFeS", obj="SN", offset=0, day=''):
'''
Imports data cubes, extracts important info out of FITS headers,
extracts spectra out of user selected region in data cube,
creates a Spectrum object
Parameters
----------
blue_file, : (str)
red_file File names of WiFeS data cubes to combine and extract info from
z=0 : (float)
Redshift of object
c='black' : (str)
Colour to plot spectrum in
mjd_t_peak=0 : (int)
MJD of time of SN max
instrument="wifes" : (str)
Name of instrument
obj="SN" : (str)
Name of object
offset=0 : (int)
How much to shift spectrum up in plotting so not all spectra are overlaid
day='' : (str)
Date of observations
Returns
-------
processed_spectrum : (Spectrum object)
Filled out Spectrum object from class_Spectrum.py
'''
#Load in data
b_sci, b_var, _ = loadFITS(blue_file)
r_sci, r_var, _ = loadFITS(red_file)
#Extract MJD out of header
mjd = b_sci.header['MJD-OBS']
date = b_sci.header['DATE-OBS']
bad_obj_names = ["", "TOO"]
if b_sci.header['NOTES'].upper() not in bad_obj_names:
obj = b_sci.header['NOTES']
#Generate image for user to see
ave_image = aveImage(r_sci.data, b_sci.data)
#Get user selection of pixels to analyse/reduce
save_x, save_y = select_spaxel(ave_image, title='Select transient spaxels to add',)
sub_x, sub_y = select_spaxel(ave_image, title='Select sky spaxels to subtract',
rect = (save_x['start'], save_y['start']),
width = save_x['end']-save_x['start'],
height= save_y['end']-save_y['start'],
)
#Reset
start = [None, None]
end = [None, None]
#Calculate spectrum for selected values
b_fl = calcFlux(b_sci, b_var, save_x, save_y, sub_x, sub_y)
b_var= calcVar(b_var, save_x, save_y, sub_x, sub_y)
b_wl = calcWavelength(b_sci)
r_fl = calcFlux(r_sci, r_var, save_x, save_y, sub_x, sub_y)
r_var= calcVar(r_var, save_x, save_y, sub_x, sub_y)
r_wl = calcWavelength(r_sci)
#Combine spectra into single array
fl, var, wl = combineSpectra(b_fl, b_var, b_wl, r_fl, r_var, r_wl)
std = np.sqrt(var)
#Create spectrum object
processed_spectrum = Spectrum(wavelength=wl,
flux=fl,
var=var,
std=std,
date=date,
mjd=mjd,
mjd_t_peak=mjd_t_peak,
instrument=instrument,
obj=obj,
z=z,
offset=offset,
c=c,
)
return processed_spectrum
#Returns order of magnitude of a value
def magnitude(value):
'''Returns order of magnitude of a float value'''
return int(np.log10(np.absolute(value)))
#Reads command line arguments
def read_cla(argv):
'''
Reads in command line arguments, and sets flags for
remainder of code to work through
Parameters
----------
argv, : (list) argument vector, lists all things after 'python extract.py'
Returns
-------
options : (Various)
Boolean values for each flag, text for object label
filenames : (string)
File names of red and blue side
'''
global plot_spectrum
global save_spectrum
global normalise_spectrum
global velocity_space
global velocity_centre
global calc_gaussian
global colour
global label
global redshift
global trim_spectrum
global trimmin
global trimmax
global b_file
global r_file
global spectral_lines
global velocity_window
global fwhm
options, remainder = getopt.getopt(argv, 'c:l:r:hnsvgt', ['help',
'noplot',
'save-spectrum',
'normalise-spectrum',
'velocity-space',
'velocity-centre=',
'fit-gaussian',
'colour=',
'color=',
'label=',
'rest-frame=',
'trim-spectrum',
'trim-min=',
'trim-max=',
'spectral-lines',
'v-window='
])
for opt, arg in options:
if opt in ('-h', '--help'):
print(
'''
Usage: python extract.py [OPTIONS] blue_p11_file.fits red_p11_file.fits
Reads in p11 files from PyWiFeS and creates a spectrum based off selected pixels.
Two windows will pop up consecutively. In the first one, select the target's spaxels.
In the second one, select some clear region of sky to subtract from the spectrum.
If all goes well, then a sky subtracted spectrum will pop out
OPTIONS:
-c (or --colour)
Colour to plot
-g (or --fit-gaussian)
Attempts to fit a gaussian to to the line profile
-h (or --help)
List out all command line options
-l (or --label, default inferred from filename)
Name of object, defaults to date and unique ID of WiFeS file name
-n (or --normalise-spectrum default = False)
Normalise spectrum for better plotting comparison
-s (or --save-spectrum, default = False)
Save spectrum as CSV, with columns 'wavelength', 'flux', 'std dev'
-t (or --trim-spectrum, default = False)
Enables trimming the wavelength range of the spectrum. To be used with --trim-min and --trim-max
-v (or --velocity space, default = False)
Converts x-axis into velocity space. To be used with --velocity-centre and --fit-gaussian
--velocity-centre (default = 6564.61 Angstrom = H alpha)
Central wavelength to define as '0' velocity, in Angstrom
-z (or --redshift, default = 0)
Sets a redshift for redshift correction. If not entered, assumes target already in rest frame
--trim-min (default = 3800)
Wavelength at which all shorter wavelengths are discarded (in Angstrom)
--trim-max (default = 7500)
Wavelength at which all longer wavelengths are discarded (in Angstrom)
--noplot (default = False)
Turns off plotting
--spectral-lines (default = False)
Mark common spectral lines on plot
--fwhm (default = 10000)
Width of gaussian to fit if --fit-gaussian enabled (in km/s)
--vel-window (default = 20000)
x limits if plotting in velocity space
'''
)
exit()
elif opt in ('-c','--colour', '--color'):
colour = arg
elif opt in ('-s', '--save-spectrum'):
save_spectrum = True
elif opt in ('-n','--normalise-spectrum'):
normalise_spectrum = True
elif opt in ('-v','--velocity-space'):
velocity_space = True
elif opt in ('--velocity-centre'):
velocity_centre = float(arg)
elif opt in ('-g', '--fit-gaussian'):
calc_gaussian = True
elif opt in ('-z','--redshift'):
redshift = float(arg)
elif opt in ('-t', '--trim-spectrum'):
trim_spectrum = True
elif opt in ('--trim-min'):
trimmin = float(arg)
elif opt in ('--trim-max'):
trimmax = float(arg)
elif opt in ('--label'):
label = arg
elif opt in ('--noplot'):
plot_spectrum = False
elif opt in ('--spectral-lines'):
spectral_lines = True
elif opt in ('--vel-window'):
velocity_window = float(arg)
elif opt in ('--fwhm'):
fwhm = float(arg)
# If incorrect number of files parsed in
if len(remainder) != 2:
print("Usage: python extract.py [OPTIONS] blue_p11_file.fits red_p11_file.fits")
exit()
else:
# If no label specified in command line arguments
if label == 'unlabelled':
#e.g. T2m3wb-20190919.165814-0100.p11
#extract '20190919.165814' = 'date.uID'
label = remainder[0].split('-')[1]
#Attempts to correctly order files if red was parsed before blue accidentally
for filename in remainder:
if 'T2m3wb' in filename:
b_file = filename
elif 'T2m3wr' in filename:
r_file = filename
# return plot_spectrum, save_spectrum, normalise_spectrum, velocity_space, velocity_centre, calc_gaussian, colour, label, redshift, remainder[0], remainder[1]
if __name__ == "__main__":
#Read in the command line arguments
argv = sys.argv[1:]
read_cla(argv)
# Read in data from P11's
transient = processData(b_file, r_file, c=colour, obj=label, z=redshift)
transient.Deredshift()
if trim_spectrum == True:
transient.TrimWL(min_wl=trimmin, max_wl=trimmax)
if velocity_space == True:
transient.Normalise(ignore_range=telluric_noise)
transient.wl2vel(centre=velocity_centre)
if calc_gaussian == True:
initial_guess = {'amp': 0.90, 'fwhm': FWHM2sigma(fwhm) , 'mean':0}
transient_spectral_line = SNLine(wl=transient.wl,
fl=transient.fl,
vel=transient.vel,
var=transient.var,
std=transient.std,
colour=transient.c,
)
transient_spectral_line.fitCurve(gaussians={'G1':initial_guess},
amp_percent_range=100, #Bounds (percent)
fwhm_percent_range=20, #Bounds (percent)
continuum_offset_percent_range=1, #Bounds (percent)
mean_range=200, #Bounds (km/s)
)
transient_spectral_line.printInfo()
if normalise_spectrum == True:
transient.Normalise(ignore_range=telluric_noise)
if save_spectrum == True:
transient.SaveSpectrum('{}.csv'.format(label))
#If user wants a plot
if plot_spectrum == True:
#Set up axes
fig, ax = plt.subplots()
if velocity_space == True:
# Set axis labels
ax.set_xlabel(r'Velocity (km $\mathrm{s}^{-1}$)',fontsize=16,family='serif')
transient.PlotSpectrum(ax, sigma=1, vel=True, alpha=0.8)
ax.set_xlim(-velocity_window/2, velocity_window/2)
if calc_gaussian == True:
ax.plot(transient_spectral_line.vel, transient_spectral_line.fl_fit, color='red', linestyle='--')
else:
# Set axis labels
ax.set_xlabel(r'Wavelength ($\AA$)',fontsize=16,family='serif')
transient.PlotSpectrum(ax, sigma=1, vel=False, alpha=0.8)
if normalise_spectrum == True:
ax.set_ylabel(r'Normalised Flux',fontsize=16,family='serif')
else:
ax.set_ylabel(r'Flux',fontsize=16,family='serif')
#If user wants spectral lines overlaid
if spectral_lines == True:
if velocity_space == True:
print("Can't plot spectral lines in velocity space (yet)")
else:
#Add emission markers
xlim = ax.get_xlim()
ylim = ax.get_ylim()
top_offset = np.subtract(ylim[1], ylim[0])*0.1
top = ylim[1] - top_offset
side_offset = np.subtract(xlim[1], xlim[0])*0.03
ax.axvline(x=LINE_H_I[0], color='black', linestyle='--', alpha=0.8)
ax.text(LINE_H_I[0] + side_offset, top, r'H$\alpha$')
ax.axvline(x=LINE_N_II[0], color='black', linestyle='--', alpha=0.8)
ax.text(LINE_N_II[0] + side_offset, top, 'N II')
ax.axvline(x=LINE_N_II[1], color='black', linestyle='--', alpha=0.8)
ax.text(LINE_N_II[1] + side_offset, top, 'N II')
# Add legend
# data = mlines.Line2D([],[],color='black',marker='.', linestyle='none', label='Data')
# fit = mlines.Line2D([],[],color='black', linestyle='-', label='Fit')
# ax.legend(handles=[data, fit],loc=1)
#Format ticks
ax.minorticks_on()
ax.tick_params(axis='both',
which='major',
direction='in',
length=5,
width=1,
color='black',
top=True,
right=True,
labelsize=12,
)
ax.tick_params(axis='both',
which='minor',
direction='in',
length=2.5,
color='black',
top=True,
right=True,
labelsize=12,
)
plt.rc('text', usetex=True)
plt.rc('font', family='serif')
plt.show()
plt.close()