-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsiamese_wordpiece_enhanced.py
executable file
·725 lines (586 loc) · 27.3 KB
/
siamese_wordpiece_enhanced.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
from pathlib import Path
import numpy as np
import pandas as pd
import codecs
import os
import logging
from typing import Tuple, List
import tensorflow as tf
import keras.backend as K
from sklearn.metrics import f1_score, precision_score, recall_score
from keras.layers import Input, Embedding, Lambda, Dense, Layer, Concatenate, Dropout, Bidirectional, LSTM
from keras.models import Model
from keras.optimizers import Adam
from keras.callbacks import Callback
from keras_bert import load_trained_model_from_checkpoint, Tokenizer
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
ROOT = Path("./data")
TEST_ROOT = Path("./final_data")
MODEL_SAVED = Path("./model_saved")
if not os.path.exists(MODEL_SAVED):
os.makedirs(MODEL_SAVED)
mode = None
batch_size = 24
max_seq_len = 512
learning_rate = 2e-5
min_learning_rate = 1e-5
binary_classifier_threshold = 0.5
config_path = './bert/bert_config.json'
checkpoint_path = './bert/bert_model.ckpt'
dict_path = './bert/vocab.txt'
random_order_2000 = np.fromfile("./random_order_2000.npy", np.int32)
random_order_2500 = np.fromfile("./random_order_2500.npy", dtype=np.int32)
random_order_10000 = np.fromfile("./random_order_10000.npy", dtype=np.int32)
random_order_18000 = np.fromfile("./random_order_18000.npy", dtype=np.int32)
categories = ["aids", "breast_cancer", "diabetes", "hepatitis", "hypertension"]
token_dict = {}
with codecs.open(dict_path, 'r', 'utf-8') as reader:
for line in reader:
token = line.strip()
token_dict[token] = len(token_dict)
tokenizer = Tokenizer(token_dict)
aids_data = []
breast_cancer_data = []
diabetes_data = []
hepatitis_data = []
hypertension_data = []
for index, row in pd.read_csv(ROOT / "train_id.csv").iterrows():
if row["category"] == "aids":
aids_data.append((row['question1'],
row['question2'],
row['category'],
row['label'],
row['id']))
elif row["category"] == "breast_cancer":
breast_cancer_data.append((row['question1'],
row['question2'],
row['category'],
row['label'],
row['id']))
elif row["category"] == "diabetes":
diabetes_data.append((row['question1'],
row['question2'],
row['category'],
row['label'],
row['id']))
elif row["category"] == "hepatitis":
hepatitis_data.append((row['question1'],
row['question2'],
row['category'],
row['label'],
row['id']))
elif row["category"] == "hypertension":
hypertension_data.append((row['question1'],
row['question2'],
row['category'],
row['label'],
row['id']))
new_data = []
for index, row in pd.read_csv(ROOT / "new_train_id_v2.csv").iterrows():
new_data.append((row['question1'],
row['question2'],
row['category'],
row['label'],
row['id']))
test_data = []
for index, row in pd.read_csv(TEST_ROOT / "test_final.csv").iterrows():
test_data.append(
(row['question1'],
row['question2'],
row['category'],
row['id']))
class Evaluator(Callback):
def __init__(self, model_name, valid_ds, patience):
super(Evaluator, self).__init__()
self._best_f1 = 0.
self._best_loss = 10000.
self.passed = 0
self.best_epoch = -1
self.epochs = 0
self.patience = patience
self._model_saved = MODEL_SAVED / model_name
self.valid_ds = valid_ds
if not os.path.exists(self._model_saved):
os.makedirs(self._model_saved)
def on_batch_begin(self, epoch, logs=None):
if self.passed < self.params['steps']:
lr = (self.passed + 1.) / self.params['steps'] * learning_rate
K.set_value(self.model.optimizer.lr, lr)
self.passed += 1
elif self.params['steps'] <= self.passed < self.params['steps'] * 2:
lr = (2 - (self.passed + 1.) /
self.params['steps']) * (learning_rate - min_learning_rate)
lr += min_learning_rate
K.set_value(self.model.optimizer.lr, lr)
self.passed += 1
def on_epoch_end(self, epoch, logs=None):
val_predict = (
np.asarray(
self.model.predict_generator(
self.valid_ds.iterator(),
steps=len(self.valid_ds))[0]))
val_predict = np.squeeze(val_predict)
for i in range(len(val_predict)):
if val_predict[i] >= binary_classifier_threshold:
val_predict[i] = 1.0
else:
val_predict[i] = 0.0
val_targ = self.valid_ds.all_labels
_val_f1 = f1_score(val_targ, val_predict)
_val_recall = recall_score(val_targ, val_predict)
_val_precision = precision_score(val_targ, val_predict)
print("One epoch ended, evaluator hook is called")
print("-val_f1_measure: ", round(_val_f1, 4),
"\t-val_p_measure: ", round(_val_precision, 4),
"\t-val_r_measure: ", round(_val_recall, 4))
if _val_f1 > self._best_f1:
self.best_epoch = self.epochs
assert isinstance(mode, int), "check mode, must be a integer"
file_names = os.listdir(self._model_saved)
for fn in file_names:
if "mode_%s" % str(mode) in fn:
logger.info(
"Delete %s from %s" %
((self._model_saved / fn).name, self._model_saved))
os.remove(self._model_saved / fn)
logger.info(
"Write %s into %s" %
("mode_%s_F1_%s_loss_%s.weights" %
(str(mode), str(round(_val_f1, 4)), str(round(logs.get("val_loss"), 4))), self._model_saved))
self.model.save_weights(self._model_saved /
("mode_%s_F1_%s_loss_%s.weights" %
(str(mode), str(round(_val_f1, 4)), str(round(logs.get("val_loss"), 4)))))
self._best_f1 = _val_f1
self._best_loss = logs.get("val_loss")
if self.epochs - self.best_epoch > self.patience:
self.model.stop_training = True
logger.info("%d epochs have no improvement, earlystoping caused..." % self.patience)
self.epochs += 1
class DataGenerator:
def __init__(self, data, batch_size=32, test=False):
self.data = data
self.batch_size = batch_size
self.steps = len(self.data) // self.batch_size
if len(self.data) % self.batch_size != 0:
self.steps += 1
self.test = test
if not test:
logger.info("__Shuffle the dataset__")
if len(self.data) == 2000:
self.idxs = random_order_2000
elif len(self.data) == 18000:
self.idxs = random_order_18000
else:
self.idxs = [x for x in range(len(self.data))]
np.random.shuffle(self.idxs)
self.ID = self._get_all_id_as_ndarray()[self.idxs]
self.all_labels = self._get_all_label_as_ndarray()
self.all_labels = self.all_labels[self.idxs]
else:
self.ID = self._get_all_id_as_ndarray()
def __len__(self):
return self.steps
def iterator(self):
while True:
if not self.test:
X1, X1_, X2, X2_, C, Y = [], [], [], [], [], []
for i in self.idxs:
d = self.data[i]
x1, x1_ = tokenizer.encode(first=d[0])
x2, x2_ = tokenizer.encode(first=d[1])
c, y = d[2], d[3]
X1.append(x1)
X1_.append(x1_)
X2.append(x2)
X2_.append(x2_)
C.append([categories.index(c)])
Y.append([y])
if len(X1) == self.batch_size or i == self.idxs[-1]:
X1 = seq_padding(X1)
X1_ = seq_padding(X1_)
X2 = seq_padding(X2)
X2_ = seq_padding(X2_)
C = seq_padding(C)
C = onehot(C, 5)
Y = seq_padding(Y)
# todo: too abundant to use the generator
yield [X1, X1_, X2, X2_, C, Y], None
X1, X1_, X2, X2_, C, Y = [], [], [], [], [], []
elif self.test:
X1, X1_, X2, X2_, C = [], [], [], [], []
for i in range(len(self.data)):
d = self.data[i]
x1, x1_ = tokenizer.encode(first=d[0])
x2, x2_ = tokenizer.encode(first=d[1])
c = d[2]
X1.append(x1)
X1_.append(x1_)
X2.append(x2)
X2_.append(x2_)
C.append([categories.index(c)])
if len(X1) == self.batch_size or i == len(self.data) - 1:
X1 = seq_padding(X1)
X1_ = seq_padding(X1_)
X2 = seq_padding(X2)
X2_ = seq_padding(X2_)
C = seq_padding(C)
C = onehot(C, 5)
yield [X1, X1_, X2, X2_, C], None
X1, X1_, X2, X2_, C = [], [], [], [], []
def _get_all_label_as_ndarray(self):
if self.test:
return None
all_labels = []
for x in self.data:
all_labels.append(x[-2])
return np.array(all_labels, dtype=np.float32)
def _get_all_id_as_ndarray(self):
all_ids = []
for x in self.data:
all_ids.append(x[-1])
return np.array(all_ids, dtype=np.int32)
def seq_padding(seqs, padding=0):
lens = [len(x)for x in seqs]
max_len = max(lens)
return np.array([np.concatenate([x, [padding] * (max_len - len(x))])
if len(x) < max_len else x for x in seqs])
def onehot(obj: np.ndarray, depth):
rlt = np.zeros_like(obj, dtype=np.float32)
rlt = np.tile(np.expand_dims(rlt, axis=-1), [1, 1, depth])
for i in range(obj.shape[0]):
for j in range(obj.shape[1]):
vec = np.zeros(shape=(depth,))
vec[obj[i][j]] = 1
rlt[i][j] = vec
return rlt
class Attention(Layer):
def __init__(self):
super(Attention, self).__init__()
self.supports_masking = True
def build(self, input_shape):
# Used purely for shape validation.
if len(input_shape) != 2:
raise ValueError(
'A `Attention` layer should be called '
'on a list of 2 inputs')
if all([shape is None for shape in input_shape]):
return
self.built = True
def call(self, inputs, **kwargs):
query, key_value = inputs
query = K.expand_dims(query, axis=-1) # (B, D, 1)
score = tf.matmul(key_value, query) # (B, S, 1)
score = K.softmax(score, axis=1) # (B, S, 1)
rlt = score * key_value # (B, S, 1) * (B, S, D) = (B, S, D)
rlt = tf.reduce_mean(rlt, axis=1) # (B, D)
return rlt
def compute_output_shape(self, input_shape):
return [input_shape[0]]
class CoAttentionAndCombine(Layer):
def __init__(self, atype):
super(CoAttentionAndCombine, self).__init__()
self.atype = atype
self.supports_masking = True
def build(self, input_shape):
# Used purely for shape validation.
if len(input_shape) != 4:
raise ValueError(
'A `CoAttentionAndCombine` layer should be called '
'on a list of 4 inputs')
if all([shape is None for shape in input_shape]):
return
inputs_shapes = [list(shape)
for shape in input_shape] # (x1, m1, x2, m2)
if self.atype == 'bi_linear':
self.bi_linear_w = self.add_weight(name='bi_linear_w',
initializer='random_normal',
shape=(inputs_shapes[0][-1], inputs_shapes[0][-1]),
trainable=True)
self.built = True
def call(self, inputs, **kwargs):
x1 = inputs[0]
m1 = tf.expand_dims(inputs[1], axis=2) # (batch_size, seq_len1, 1)
x2 = inputs[2]
m2 = tf.expand_dims(inputs[3], axis=1) # (batch_size, 1, seq_len2)
mask_similarity_matrix = tf.matmul(
m1, m2) # (batch_size, seq_len1, seq_len2)
mask_similarity_matrix = (mask_similarity_matrix - 1.) * 10000
similarity_matrix: object = None
if self.atype == 'dot':
# (batch_size, seq_len1, seq_len2)
similarity_matrix = tf.matmul(x1, x2, transpose_b=True)
elif self.atype == 'bi_linear':
similarity_matrix = tf.matmul(
tf.tensordot(
x1, self.bi_linear_w, [
[2], [0]]), x2, transpose_b=True)
assert similarity_matrix is not None, "type %s is not in ['dot', 'bi_linear']" % self.atype
similarity_matrix = tf.add(similarity_matrix, mask_similarity_matrix)
similarity_matrix_transpose = tf.transpose(
similarity_matrix, perm=[0, 2, 1])
alpha1 = tf.nn.softmax(similarity_matrix_transpose, axis=-1)
alpha2 = tf.nn.softmax(similarity_matrix, axis=-1)
x1_tilde = tf.matmul(alpha2, x2)
x2_tilde = tf.matmul(alpha1, x1)
m1 = tf.concat([x1, x1_tilde, tf.abs(tf.subtract(
x1, x1_tilde)), tf.multiply(x1, x1_tilde)], axis=-1)
m2 = tf.concat([x2, x2_tilde, tf.abs(tf.subtract(
x2, x2_tilde)), tf.multiply(x2, x2_tilde)], axis=-1)
output: List = [m1, m2] # ***output must be a List***
return output
def compute_output_shape(self, input_shape: List[Tuple]) -> List[Tuple]:
output_shapes: List[Tuple] = list() # ***element must be a tuple***
input_shapes = [input_shape[0], input_shape[2]] # do not output mask
for x in input_shapes:
output_shapes.append((x[0], x[1], 4 * x[2]))
return output_shapes
def create_siamese_bert_esim_model():
bert_model = load_trained_model_from_checkpoint(
config_path, checkpoint_path, seq_len=None)
for l in bert_model.layers:
l.trainable = True
x1_in = Input(shape=(None,))
m1_in = Input(shape=(None,))
x2_in = Input(shape=(None,))
m2_in = Input(shape=(None,))
c_in = Input(shape=(None,))
y_in = Input(shape=(None,))
mask1 = Lambda(lambda x: K.cast(K.greater(x, 0), 'float32'))(x1_in)
mask2 = Lambda(lambda x: K.cast(K.greater(x, 0), 'float32'))(x2_in)
q1 = bert_model([x1_in, m1_in])
q2 = bert_model([x2_in, m2_in])
q1_combined, q2_combined = CoAttentionAndCombine('dot')([q1, mask1, q2, mask2])
def reduce_mean_with_mask(x, mask):
dim = K.int_shape(x)[-1]
seq_len = K.expand_dims(K.sum(mask, 1), 1) # (batch_size, 1)
# (batch_size, dim), unknown to the keras' broadcasting
seq_len_tiled = K.tile(seq_len, [1, dim])
x_sum = K.sum(x, axis=1) # (batch_size, dim)
return x_sum / seq_len_tiled
def avg_mask1(x): return reduce_mean_with_mask(x, mask1)
def avg_mask2(x): return reduce_mean_with_mask(x, mask2)
def max_closure(x): return K.max(x, axis=1)
avg_op1 = Lambda(avg_mask1)
avg_op2 = Lambda(avg_mask2)
max_op = Lambda(max_closure)
q1_avg = avg_op1(q1_combined)
q1_max = max_op(q1_combined)
q2_avg = avg_op2(q2_combined)
q2_max = max_op(q2_combined)
x1_rep = Concatenate()([q1_avg, q1_max])
x2_rep = Concatenate()([q2_avg, q2_max])
merge_features = Concatenate()([x1_rep, x2_rep])
hidden = Dropout(0.5)(Dense(200, activation='relu')(merge_features))
p = Dense(1, activation='sigmoid')(hidden)
train_model = Model([x1_in, m1_in, x2_in, m2_in, c_in, y_in], p)
model = Model([x1_in, m1_in, x2_in, m2_in, c_in], p)
loss = K.mean(K.binary_crossentropy(target=y_in, output=p))
train_model.add_loss(loss)
train_model.compile(optimizer=Adam(learning_rate))
train_model.summary()
return train_model, model
def create_siamese_bert_esim_add_category_model():
bert_model = load_trained_model_from_checkpoint(
config_path, checkpoint_path, seq_len=None)
for l in bert_model.layers:
l.trainable = True
x1_in = Input(shape=(None,))
m1_in = Input(shape=(None,))
x2_in = Input(shape=(None,))
m2_in = Input(shape=(None,))
c_in = Input(shape=(None,))
y_in = Input(shape=(None,))
mask1 = Lambda(lambda x: K.cast(K.greater(x, 0), 'float32'))(x1_in)
mask2 = Lambda(lambda x: K.cast(K.greater(x, 0), 'float32'))(x2_in)
q1 = bert_model([x1_in, m1_in])
q2 = bert_model([x2_in, m2_in])
q1_combined, q2_combined = CoAttentionAndCombine('dot')([q1, mask1, q2, mask2])
q1_50 = Dense(units=50, activation='relu')(q1) # (B, S, D)
q2_50 = Dense(units=50, activation='relu')(q2)
c = Embedding(input_dim=5,
output_dim=50,
trainable=True)(c_in)
c = Lambda(lambda c: c[:, 0, :])(c) # (B, D)
c_q1 = Attention()([c, q1_50])
c_q2 = Attention()([c, q2_50])
def reduce_mean_with_mask(x, mask):
dim = K.int_shape(x)[-1]
seq_len = K.expand_dims(K.sum(mask, 1), 1) # (batch_size, 1)
# (batch_size, dim), unknown to the keras' broadcasting
seq_len_tiled = K.tile(seq_len, [1, dim])
x_sum = K.sum(x, axis=1) # (batch_size, dim)
return x_sum / seq_len_tiled
def avg_mask1(x): return reduce_mean_with_mask(x, mask1)
def avg_mask2(x): return reduce_mean_with_mask(x, mask2)
def max_closure(x): return K.max(x, axis=1)
avg_op1 = Lambda(avg_mask1)
avg_op2 = Lambda(avg_mask2)
max_op = Lambda(max_closure)
q1_avg = avg_op1(q1_combined)
q1_max = max_op(q1_combined)
q2_avg = avg_op2(q2_combined)
q2_max = max_op(q2_combined)
x1_rep = Concatenate()([q1_avg, q1_max])
x2_rep = Concatenate()([q2_avg, q2_max])
merge_features = Concatenate()([x1_rep, x2_rep, c_q1, c_q2])
hidden = Dropout(0.5)(Dense(200, activation='relu')(merge_features))
p = Dense(1, activation='sigmoid')(hidden)
train_model = Model([x1_in, m1_in, x2_in, m2_in, c_in, y_in], p)
model = Model([x1_in, m1_in, x2_in, m2_in, c_in], p)
loss = K.mean(K.binary_crossentropy(target=y_in, output=p))
train_model.add_loss(loss)
train_model.compile(optimizer=Adam(learning_rate))
train_model.summary()
return train_model, model
def create_esim_bert_supervised_domain_model():
bert_model = load_trained_model_from_checkpoint(
config_path, checkpoint_path, seq_len=None)
for l in bert_model.layers:
l.trainable = True
x1_in = Input(shape=(None,))
m1_in = Input(shape=(None,))
x2_in = Input(shape=(None,))
m2_in = Input(shape=(None,))
c_in = Input(shape=(None, 5))
y_in = Input(shape=(None,))
mask1 = Lambda(lambda x: K.cast(K.greater(x, 0), 'float32'))(x1_in)
mask2 = Lambda(lambda x: K.cast(K.greater(x, 0), 'float32'))(x2_in)
q1 = bert_model([x1_in, m1_in])
q2 = bert_model([x2_in, m2_in])
q1_0 = Lambda(lambda x: x[:, 0, :])(q1) # [CLS]
q2_0 = Lambda(lambda x: x[:, 0, :])(q2) # [CLS]
x_0 = Concatenate(axis=-1)([q1_0, q2_0])
specific_domain_feat = Dense(200, activation='relu')(x_0)
c = Dense(5, activation='softmax')(specific_domain_feat)
q1_combined, q2_combined = CoAttentionAndCombine('dot')([q1, mask1, q2, mask2])
def reduce_mean_with_mask(x, mask):
dim = K.int_shape(x)[-1]
seq_len = K.expand_dims(K.sum(mask, 1), 1) # (batch_size, 1)
# (batch_size, dim), unknown to the keras' broadcasting
seq_len_tiled = K.tile(seq_len, [1, dim])
x_sum = K.sum(x, axis=1) # (batch_size, dim)
return x_sum / seq_len_tiled
def avg_mask1(x): return reduce_mean_with_mask(x, mask1)
def avg_mask2(x): return reduce_mean_with_mask(x, mask2)
def max_closure(x): return K.max(x, axis=1)
avg_op1 = Lambda(avg_mask1)
avg_op2 = Lambda(avg_mask2)
max_op = Lambda(max_closure)
q1_avg = avg_op1(q1_combined)
q1_max = max_op(q1_combined)
q2_avg = avg_op2(q2_combined)
q2_max = max_op(q2_combined)
x1_rep = Concatenate()([q1_avg, q1_max])
x2_rep = Concatenate()([q2_avg, q2_max])
merge_features = Concatenate()([x1_rep, x2_rep])
public_domain_feat = Dense(200, activation='relu')(merge_features)
fuse_feat = Concatenate(axis=-1)([public_domain_feat, specific_domain_feat])
p = Dense(1, activation='sigmoid')(fuse_feat)
train_model = Model([x1_in, m1_in, x2_in, m2_in, c_in, y_in], [p, c])
model = Model([x1_in, m1_in, x2_in, m2_in, c_in], [p, c])
loss1 = K.mean(K.binary_crossentropy(target=y_in, output=p))
loss2 = K.mean(K.categorical_crossentropy(target=c_in, output=c))
loss = loss1 + loss2
train_model.add_loss(loss)
train_model.compile(optimizer=Adam(learning_rate))
return train_model, model
def train(train_model, train_ds, valid_ds, model_name):
evaluator = Evaluator(model_name=model_name, valid_ds=valid_ds, patience=1)
train_model.fit_generator(train_ds.iterator(),
steps_per_epoch=len(train_ds),
epochs=15,
class_weight="auto",
validation_data=valid_ds.iterator(),
validation_steps=len(valid_ds),
callbacks=[evaluator])
def gen_stacking_features(weights_root_path, model_name):
valid_true_labels = []
valid_probs = []
valid_ids = []
mode_test_ds = DataGenerator(test_data, batch_size=batch_size, test=True)
test_ids = mode_test_ds.ID
test_probs = []
for weight in os.listdir(weights_root_path):
_mode = int(weight.split('_')[1])
train_model, _ = create_esim_bert_supervised_domain_model() # todo: be easy to modify it
train_model.load_weights(weights_root_path / weight)
_valid_data = [aids_data[j] for i, j in enumerate(random_order_2500) if i % 10 == _mode] + \
[hypertension_data[j] for i, j in enumerate(random_order_2500) if i % 10 == _mode] + \
[hepatitis_data[j] for i, j in enumerate(random_order_2500) if i % 10 == _mode] + \
[breast_cancer_data[j] for i, j in enumerate(random_order_2500) if i % 10 == _mode] + \
[diabetes_data[j] for i, j in enumerate(random_order_10000) if i % 10 == _mode]
mode_valid_ds = DataGenerator(_valid_data, batch_size=batch_size, test=False)
valid_true_labels.append(mode_valid_ds.all_labels)
valid_ids.append(mode_valid_ds.ID)
valid_probs.append(
np.squeeze(
train_model.predict_generator(
mode_valid_ds.iterator(),
steps=len(mode_valid_ds))[0]))
K.clear_session()
# todo: the next is dealing with the abundant calling
_, model = create_esim_bert_supervised_domain_model()
model.load_weights(weights_root_path / weight)
test_probs.append(
np.squeeze(
model.predict_generator(
mode_test_ds.iterator(),
steps=len(mode_test_ds))[0]))
K.clear_session()
to_vote_format = {"id": test_ids}
for i, each in enumerate(test_probs):
to_vote_format["label_%s" % str(i)] = np.array(each.round(), np.int32)
pd.DataFrame(to_vote_format).to_csv(TEST_ROOT / (model_name + "_predictions_for_vote.csv"), index=False)
valid_out = pd.DataFrame({"id": np.concatenate(valid_ids).astype(np.int32),
"probs": np.concatenate(valid_probs),
"label": np.concatenate(valid_true_labels).astype(np.int32)})
valid_out.sort_values(by='id', inplace=True)
test_out = pd.DataFrame(
{"id": test_ids, "probs": np.mean(test_probs, axis=0)})
valid_out.to_csv(TEST_ROOT / (model_name + "_stacking_new_train.csv"),
index=False)
test_out.to_csv(
TEST_ROOT / (model_name + "_stacking_new_test.csv"), index=False)
def get_loss(weights_path: str):
_mode = int(weights_path.split('/')[-1].split('_')[1])
_valid_data = [aids_data[j] for i, j in enumerate(random_order_2500) if i % 10 == _mode] + \
[hypertension_data[j] for i, j in enumerate(random_order_2500) if i % 10 == _mode] + \
[hepatitis_data[j] for i, j in enumerate(random_order_2500) if i % 10 == _mode] + \
[breast_cancer_data[j] for i, j in enumerate(random_order_2500) if i % 10 == _mode] + \
[diabetes_data[j] for i, j in enumerate(random_order_10000) if i % 10 == _mode]
ds = DataGenerator(_valid_data, batch_size=batch_size, test=False)
tm, m = create_siamese_bert_esim_model()
tm.load_weights(weights_path)
tm.compile(optimizer=Adam())
loss = tm.evaluate_generator(generator=ds.iterator(), steps=len(ds))
K.clear_session()
return loss
if __name__ == "__main__":
for mode in range(10):
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
K.set_session(sess)
train_data = [aids_data[j] for i, j in enumerate(random_order_2500) if i % 10 != mode] + \
[hypertension_data[j] for i, j in enumerate(random_order_2500) if i % 10 != mode] + \
[hepatitis_data[j] for i, j in enumerate(random_order_2500) if i % 10 != mode] + \
[breast_cancer_data[j] for i, j in enumerate(random_order_2500) if i % 10 != mode] + \
[diabetes_data[j] for i, j in enumerate(random_order_10000) if i % 10 != mode]
valid_data = [aids_data[j] for i, j in enumerate(random_order_2500) if i % 10 == mode] + \
[hypertension_data[j] for i, j in enumerate(random_order_2500) if i % 10 == mode] + \
[hepatitis_data[j] for i, j in enumerate(random_order_2500) if i % 10 == mode] + \
[breast_cancer_data[j] for i, j in enumerate(random_order_2500) if i % 10 == mode] + \
[diabetes_data[j] for i, j in enumerate(random_order_10000) if i % 10 == mode]
_train_ds = DataGenerator(train_data, batch_size=batch_size, test=False)
_valid_ds = DataGenerator(valid_data, batch_size=batch_size, test=False)
_test_ds = DataGenerator(test_data, batch_size=batch_size, test=True)
_train_model, _model = create_esim_bert_supervised_domain_model() # todo: be easy to modify it
train(
train_model=_train_model,
train_ds=_train_ds,
valid_ds=_valid_ds,
model_name="siamese_esim_bert_domain")
logger.info("___Reset The Computing Graph___")
K.clear_session()
gen_stacking_features(Path(MODEL_SAVED) / "siamese_esim_bert_domain", "siamese_esim_bert_domain")