forked from Project-MONAI/MONAI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.cfg
227 lines (214 loc) · 5.25 KB
/
setup.cfg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
[metadata]
name = monai
author = MONAI Consortium
author_email = [email protected]
url = https://monai.io/
description = AI Toolkit for Healthcare Imaging
long_description = file:README.md
long_description_content_type = text/markdown; charset=UTF-8
platforms = OS Independent
license = Apache License 2.0
license_files =
LICENSE
project_urls =
Documentation=https://docs.monai.io/
Bug Tracker=https://github.com/Project-MONAI/MONAI/issues
Source Code=https://github.com/Project-MONAI/MONAI
[options]
python_requires = >= 3.7
# for compiling and develop setup only
# no need to specify the versions so that we could
# compile for multiple targeted versions.
setup_requires =
torch
ninja
install_requires =
torch>=1.7
numpy>=1.17
[options.extras_require]
all =
nibabel
scikit-image>=0.14.2
pillow
tensorboard
gdown>=4.4.0
pytorch-ignite==0.4.9
torchvision
itk>=5.2
tqdm>=4.47.0
lmdb
psutil
cucim>=21.8.2
openslide-python==1.1.2
tifffile
imagecodecs
pandas
einops
transformers
mlflow
matplotlib
tensorboardX
pyyaml
fire
jsonschema
pynrrd
pydicom
h5py
nibabel =
nibabel
skimage =
scikit-image>=0.14.2
pillow =
pillow!=8.3.0
tensorboard =
tensorboard
gdown =
gdown>=4.4.0
ignite =
pytorch-ignite==0.4.9
torchvision =
torchvision
itk =
itk>=5.2
tqdm =
tqdm>=4.47.0
lmdb =
lmdb
psutil =
psutil
cucim =
cucim>=21.8.2
openslide =
openslide-python==1.1.2
tifffile =
tifffile
imagecodecs =
imagecodecs
pandas =
pandas
einops =
einops
transformers =
transformers
mlflow =
mlflow
matplotlib =
matplotlib
tensorboardX =
tensorboardX
pyyaml =
pyyaml
fire =
fire
jsonschema =
jsonschema
pynrrd =
pynrrd
pydicom =
pydicom
h5py =
h5py
[flake8]
select = B,C,E,F,N,P,T4,W,B9
max_line_length = 120
# C408 ignored because we like the dict keyword argument syntax
# E501 is not flexible enough, we're using B950 instead
ignore =
E203
E501
E741
W503
W504
C408
N812 # lowercase 'torch.nn.functional' imported as non lowercase 'F'
B023 # https://github.com/Project-MONAI/MONAI/issues/4627
per_file_ignores = __init__.py: F401, __main__.py: F401
exclude = *.pyi,.git,.eggs,monai/_version.py,versioneer.py,venv,.venv,_version.py
[isort]
known_first_party = monai
profile = black
line_length = 120
skip = .git, .eggs, venv, .venv, versioneer.py, _version.py, conf.py, monai/__init__.py
skip_glob = *.pyi
[versioneer]
VCS = git
style = pep440
versionfile_source = monai/_version.py
versionfile_build = monai/_version.py
tag_prefix =
parentdir_prefix =
[mypy]
# Suppresses error messages about imports that cannot be resolved.
ignore_missing_imports = True
# Changes the treatment of arguments with a default value of None by not implicitly making their type Optional.
no_implicit_optional = True
# Warns about casting an expression to its inferred type.
warn_redundant_casts = True
# No error on unneeded # type: ignore comments.
warn_unused_ignores = False
# Shows a warning when returning a value with type Any from a function declared with a non-Any return type.
warn_return_any = True
# Prohibit equality checks, identity checks, and container checks between non-overlapping types.
strict_equality = True
# Shows column numbers in error messages.
show_column_numbers = True
# Shows error codes in error messages.
show_error_codes = True
# Use visually nicer output in error messages: use soft word wrap, show source code snippets, and show error location markers.
pretty = False
[mypy-versioneer]
# Ignores all non-fatal errors.
ignore_errors = True
[mypy-monai._version]
# Ignores all non-fatal errors.
ignore_errors = True
[mypy-monai.eggs]
# Ignores all non-fatal errors.
ignore_errors = True
[pytype]
# Space-separated list of files or directories to exclude.
exclude = versioneer.py _version.py
# Space-separated list of files or directories to process.
inputs = monai
# Keep going past errors to analyze as many files as possible.
keep_going = True
# Run N jobs in parallel.
jobs = 8
# All pytype output goes here.
output = .pytype
# Paths to source code directories, separated by ':'.
pythonpath = .
# Check attribute values against their annotations.
check_attribute_types = True
# Check container mutations against their annotations.
check_container_types = True
# Check parameter defaults and assignments against their annotations.
check_parameter_types = True
# Check variable values against their annotations.
check_variable_types = True
# Comma or space separated list of error names to ignore.
disable = pyi-error
# Report errors.
report_errors = True
# Experimental: Infer precise return types even for invalid function calls.
precise_return = True
# Experimental: solve unknown types to label with structural types.
protocols = True
# Experimental: Only load submodules that are explicitly imported.
strict_import = False
[coverage:run]
concurrency = multiprocessing
source = .
data_file = .coverage/.coverage
omit = setup.py
[coverage:report]
exclude_lines =
pragma: no cover
if TYPE_CHECKING:
# Don't complain if tests don't hit code:
raise NotImplementedError
if __name__ == .__main__.:
show_missing = True
skip_covered = True
[coverage:xml]
output = coverage.xml