-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathdensity.f90
1639 lines (1575 loc) · 57.5 KB
/
density.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
subroutine density(spin)
!..................................................................
! It prints out the density from a file along a line or in a
! plane to the file 'out.dat_[i]', where 'i' is a character
! which distinguishes between different plots (if any)
!..................................................................
! DIRC - direct lattice vectors
! RECC - reciprocal lattice vectors (with 2*pi)
! VOLC - unit cell volume
!..................................................................
! BCELL - reciprocal lattice vectors (without 2*pi)
!..................................................................
use param
use atoms
use code
implicit none
real*8, dimension(:,:,:),allocatable :: GRID
real*8, parameter :: pi=3.1415927d0
real*8, parameter :: tiny = 0.00001
integer ijk,iErr,lenght
real*8 Dip(3),Quadr(3,3),totdens
character cha,cha2*2
character filen*12,filen1*12,name*6,item*2
logical Dip_Done, Quadr_Done,spin
!
!........... do BCELL = RECC/(2*pi) - it is used in transforming
! grid point coordinates
!
BCELL=RECC/(2*pi)
!........... intitalise the density
!
allocate(GRID(NGX,NGY,NGZ))
GRID=0.0
!___________ set core charges to 0
allocate(Z_atom(NSPEC))
Z_atom=0.0
!
!........... read the density to GRID(iX,iY,iZ).
! The total density 'totdens' is calculated just to take care of
! the calculations.
!
totdens=0.0
!_______________ VASP input
if(Which_Code.eq.' VASP') then
if(.not. spin) then
1 write(*,*) '....... Choose the file to be read in: ......'
write(*,*)
write(*,*) ' C. Total electron density CHGCAR'
write(*,*) ' P. Partial electron density PARCHG'
write(*,*) ' L. Electrostatic potential LOCPOT'
write(*,*) ' Q. Quit: do not read any file'
write(*,*)
write(*,*)'------------>'
read(*,'(a)',err=1) item
if(item.eq.'C') then
name='CHGCAR'
else if(item.eq.'P') then
name='PARCHG'
else if(item.eq.'L') then
name='LOCPOT'
else if(item.eq.'Q') then
return
else
go to 1
end if
else
name='CHGCAR'
end if
write(*,*)'Reading in the density from '//name//' ...'
filen1=' '//name//'.new'
call vasp_dens(grid,totdens,name,spin,iErr)
if(iErr.eq.1) go to 150
!_______________ SIESTA input
else if(Which_Code.eq.'SIESTA') then
write(*,*) 'Reading in the density from '//trim(seed)//'.RHO ...'
filen1=' job.RHO.new'
call siesta_dens(grid,totdens,spin,iErr)
if(iErr.eq.1) go to 150
end if
close (1)
write(*,*) '.....> Total charge = ',totdens/NPLWV,' <.....'
write(*,*)'Done!'
!
!.......... At this stage we have grid(iX,iY,iZ) which contains the
! total charge density of the system
!..................................................................
!
!....................................................................
!............ General part: let us plot just once ...................
!....................................................................
!.... ijk - counts different cycles of calculations (not more than 9),
! i.e. different plots
!
ijk=1
Dip_Done=.false.
Quadr_Done=.false.
!
!............ name of the file for the output
!
2 if(ijk.le.9) then
write(cha,'(i1)') ijk
filen='out.dat_'//cha
lenght=9
else if(ijk.le.99) then
write(cha2,'(i2)') ijk
filen='out.dat_'//cha2
lenght=10
else
write(*,*)'DENSITY: You cannot trial my patience so much!'
go to 100
end if
!
!____________ choose between a line, plane or charge
!
write(*,*)'...... Choose between line or plane ......'
write(*,*)
write(*,'(a33,i2)')' NUMBER OF THE CURRENT PLOT: ',ijk
write(*,*)' pL. Plot density along a line'
write(*,*)' pP. Plot density in a plane'
write(*,*)' CS. Amount of charge inside a sphere'
write(*,*)' Ex. Exploration of the density'
if(Dip_Done) then
write(*,*)' DM. Dipole moment <== DONE!'
else
write(*,*)' DM. Dipole moment'
end if
if(Quadr_Done) then
write(*,*)' QM. Quadrupole moment <== DONE!'
else
write(*,*)' QM. Quadrupole moment'
end if
if(Dip_Done.and.Quadr_Done) write(*,*) &
' vP. Get density via point charges: match moments & potential'
write(*,*)' cA. Cutting atoms out of the density'
write(*,*)' wD. Write non-zero density as '//filen1
write(*,*)' gO. Write density in gOpenMol cube format'
write(*,*)' mD. Get density via point charges: match density'
write(*,*)' Sf. Transform the charge density for a shifted system'
write(*,*)' TH. STM image (Tersoff-Hamann)'
write(*,*)' Q. Return to the previous menu'
write(*,*)
write(*,*)'------------>'
read(*,'(a)',err=3) item
if(item.eq.'pL') then
call line(grid,DIRC,BCELL,VOLC,filen,lenght)
ijk=ijk+1
else if(item.eq.'pP') then
call plane(grid,DIRC,BCELL,VOLC,filen,lenght)
ijk=ijk+1
else if(item.eq.'CS') then
call charge_sph(grid,DIRC,BCELL,VOLC,totdens,filen,lenght)
ijk=ijk+1
else if(item.eq.'Ex') then
call max_dens(grid,DIRC,BCELL,VOLC,totdens)
else if(item.eq.'DM') then
call dipole(grid,totdens,filen,lenght,Dip)
Dip_Done=.true.
else if(item.eq.'QM') then
call quadrpl(grid,Quadr)
Quadr_Done=.true.
else if(item.eq.'vP' .and. Dip_Done .and. Quadr_Done) then
call simulate(grid,Dip,Quadr,filen,lenght)
else if(item.eq.'cA') then
call cut_atoms(grid,totdens)
else if(item.eq.'wD') then
write(*,*)'Writing non-zero elements to a new density file ...'
call write_dens(grid)
ijk=ijk+1
else if(item.eq.'gO') then
call for_gOpenMol(grid)
else if(item.eq.'mD') then
call simul_box(grid)
else if(item.eq.'Sf') then
#ifdef HORNOS
#ifdef _OPENMP
call omp_shift_charge(grid,DIRC,BCELL)
#else
call shift_charge(grid,DIRC,BCELL)
#endif
#endif
else if(item.eq.'TH') then
call stm_TH(grid)
else if(item.eq.'Q') then
go to 100
else
go to 3
end if
go to 2
3 write(*,*) "Incorrect item number! Try again!"
go to 2
!
!............ finish
!
100 deallocate(GRID)
deallocate(Z_atom)
return
!
!........... errors
150 write(*,*)'FATAL! Error while opening '//filen1(1:8)//' file!'
deallocate(GRID)
deallocate(Z_atom)
end subroutine density
subroutine simul_box(grid)
!....................................................................
! A box is chosen inside the cell and the density in the box is
! distributed with point charges using a small grid in the box
!....................................................................
use param
use atoms
use menu
implicit none
integer, parameter :: NN0=10
real*8, parameter :: tiny=0.0001
real*8 GRID(NGX,NGY,NGZ),R(3),x(3),R1(3),denval,ch
real*8 Center(3),Sides(3,3),Direct(3,3),Face(3),RecipS(3,3)
real*8 vect(3,3),vecB(3,3),RecipC(3,3),corner(3),PosCh(3),R2(3)
real*8 RecipD(3,3),dip(3),VolBox,da,VolCell,TotCh,chdens,Qlarge,Qsmall
real*8 Pot_Diff,dipm,Vol,rCharge,dV,factor,den,rCh,dQ,Qleft,Qright,ar,a
integer ngrid(3),NRs(3),iQuit,i,j,nChrg,iPnt,Nchrg1,NN2,NN,k
integer ijk,j0,ix,iy,iz,n1,n2,n3,k1,k2,k3,jj,Ncell,NunitCell,nat,i1,i2,i3
real*8, dimension(:,:,:),allocatable :: Poten,Poten1
character iask,cha1,cha2*2
logical Yes_Do,Yes_Pot,Yes_Comp, Yes_Dip
data Center/3*0.0/,ngrid/3*1/,NunitCell/1/
data Face/3*1.0/,TotCh/0.0/,NRs/3*10/,NN2/3/
!
!________ default for the directions of the box sides: along lattice vectors
do i=1,3
Direct(i,1:3)=DIRC(i,1:3)
call normalize(Direct(i,1),Direct(i,2),Direct(i,3))
end do
allocate(Poten(-NN0:NN0,-NN0:NN0,-NN0:NN0))
allocate(Poten1(-NN0:NN0,-NN0:NN0,-NN0:NN0))
!
!................. start the main menu
!
Yes_Do=.false.
Yes_Pot=.false.
Yes_Comp=.false.
Yes_Dip=.false.
1 iQuit=0
write(*,*)'............MENU for SIMULATE in the BOX .............'
write(*,*)'......... Change these parameters if necessary:.......'
write(*,*)
write(*,'(a)') '>>>>> Representation of results: through number of electrons'
write(*,'(a)') '>>>>> Algorithm for the charge integration: <nonconserving>'
write(*,'(a,3(f10.5,a))') ' 1. The box center is at: (', &
Center(1),',',Center(2),',',Center(3),')'
write(*,'(a)')' 2. Directions of the box sides are along:'
write(*,'(10x,a,3(f10.5,a))') &
'1 ',Direct(1,1),',',Direct(1,2),',',Direct(1,3),')'
write(*,'(10x,a,3(f10.5,a))') &
'2 ',Direct(2,1),',',Direct(2,2),',',Direct(2,3),')'
write(*,'(10x,a,3(f10.5,a))') &
'3 ',Direct(3,1),',',Direct(3,2),',',Direct(3,3),')'
do i=1,3
do j=1,3
Sides(i,j)=Direct(i,j)*Face(i)
end do
end do
call BASTR(Sides,RecipS,VolBox,0)
write(*,'(a,3(1x,f10.5))') &
' 3. Lengths of the box sides (in A) are: ',(Face(i),i=1,3)
corner(1)=Center(1)-0.5*(Sides(1,1)+Sides(2,1)+Sides(3,1))
corner(2)=Center(2)-0.5*(Sides(1,2)+Sides(2,2)+Sides(3,2))
corner(3)=Center(3)-0.5*(Sides(1,3)+Sides(2,3)+Sides(3,3))
write(*,'(5x,a,3(1x,f10.5))') &
'>>>> corner of the box is at ',(corner(i),i=1,3)
nChrg=ngrid(1)*ngrid(2)*ngrid(3)
write(*,'(a,3(1x,i3))') &
' 4. The number of charges in each direction: ',(ngrid(i),i=1,3)
write(*,'(5x,a,i5)')'>>>> total number of charges = ',nChrg
do i=1,3
da=Face(i)/ngrid(i)
do j=1,3
vect(i,j)=Direct(i,j)*da
end do
end do
call BASTR(vect,RecipC,VolCell,0)
write(*,'(5x,a,f10.5)')'>>>> the cell volume = ',VolCell
write(*,'(a,3(1x,i3))') &
' 5. The integration grid in each cell of the box: ', &
(NRs(i),i=1,3)
do i=1,3
da=Face(i)/(NRs(i)*ngrid(i))
do j=1,3
vecB(i,j)=Direct(i,j)*da
end do
end do
write(*,'(a)') &
' 6. Scan the box and integrate the charge (reference only):'
if(TotCh.ne.0.0) then
write(*,'(5x,a,f10.5)') &
'>>>> total charge in the box = ',TotCh
write(*,'(5x,a,i10)') &
'>>>> total grid points in the box = ',iPnt
end if
if(Yes_Do) then
write(*,'(a)') &
' 7. Get point charges using the grid specified <= DONE!'
write(*,'(5x,a,i5)')'>>>> total number of charges = ',Nchrg1
write(*,'(5x,a,f10.5)')'>>>> total charge = ',chdens
write(*,'(5x,2(a,f10.5))') &
'>>>> charges between ',Qsmall,' and ',Qlarge
write(*,'(a)') ' 8. Show point charges'
write(*,'(a)') ' 88. Visualise point charges'
write(*,'(a,i3)') &
' 9. Number of unit cells to test the potential: ',NunitCell
NN2=nint( (real(NunitCell)**(0.3333333)-1.)/2. )
NN=2*NN2+1
NunitCell=NN**3
write(*,'(5x,3(a,i3))') &
'>>>> the test box defined as : ',NN,'x',NN,'x',NN
if(Yes_Pot) then
write(*,'(a)') &
' 10. Compare potential with the previous one'
if(Yes_Comp)write(*,'(5x,a,e12.6)')'>>>> error = ',Pot_Diff
else
write(*,'(a)') &
' 10. Calculate the potential at a set of points'
end if
if(Yes_Dip) then
write(*,'(a,f10.5,a)') &
' 11. Calculated dipole moment = ',dipm,' e.A'
else
write(*,'(a,f10.5)') ' 11. Calculate the dipole moment'
end if
else
write(*,'(a)') &
' 7. Get point charges using the grid specified'
end if
write(*,'(a)') '------- G e n e r a l s e t t i n g s ---------'
write(*,'(a)')' An. Coordinates are specified in: '//angstr
write(*,'(a)') &
' Co. Show current atomic positions in fractional/Cartesian'
write(*,'(a)')'------ L e a v e t h e m e n u -------------'
write(*,'(a)')' Q. Return to the previous menu'
write(*,*)
write(*,*)'------> Choose the item and press ENTER:'
read (*,'(a)',err=1) cha2
!
![An]__________ choose the way how the coordinates are given
!
IF(trim(cha2).eq.'An') THEN
if(angstr.eq.'<Fractional>') then
angstr='<Angstroms> '
else if(angstr.eq.'<Angstroms> ') then
angstr='<AtomNumber>'
else if(angstr.eq.'<AtomNumber>') then
angstr='<Fractional>'
end if
!
![1]__________ give central point on the plane
!
ELSE IF(trim(cha2).eq.'1') THEN
WRITE(*,*)'Give the center of your box'
call givepoint(Center(1),Center(2),Center(3),angstr)
Yes_Do=.false.
TotCh=0.0
!
![2]__________ change directions of the box sides
!
ELSE IF(trim(cha2).eq.'2') THEN
19 do i=1,3
11 WRITE(*,'(a,i1,a)') &
'Give direction ',i,' for the box as X,Y,Z'
read(*,*,err=11) (Direct(i,j),j=1,3)
call normalize(Direct(i,1),Direct(i,2),Direct(i,3))
end do
call BASTR(Direct,RecipD,Vol,0)
if(Vol.lt.tiny) then
write(*,*)'ERROR! Collinear directions!'
go to 19
end if
Yes_Do=.false.
TotCh=0.0
!
![3]__________ choose lengths of the box sides
!
ELSE IF(trim(cha2).eq.'3') THEN
12 WRITE(*,'(a)')'Give lengths of the box sides (in A)'
read(*,*,err=12) (Face(j),j=1,3)
do j=1,3
Face(j)=abs(Face(j))
if(Face(j).lt.tiny) go to 12
end do
Yes_Do=.false.
TotCh=0.0
!
![4]__________ choose the grid in the box: this grid will
! determine the distribution of point charges by putting
! by one charge in every of its cells
!
ELSE IF(trim(cha2).eq.'4') THEN
13 WRITE(*,'(a)') &
'Specify the number of charges in each direction:'
read(*,*,err=13) (ngrid(i),i=1,3)
do i=1,3
if(ngrid(i).lt.1) go to 13
end do
Yes_Do=.false.
!
![5]__________ number of grid points for each small cell in the box
! (is used for integration)
!
ELSE IF(trim(cha2).eq.'5') THEN
996 write(*,*)'Give the integration grid for every CELL:'
read(*,*,err=996) (NRs(i),i=1,3)
do i=1,3
if(NRs(i).lt.2) go to 996
end do
Yes_Do=.false.
!
![6]__________ integrate the charge in the box (for reference only)
!
ELSE IF(trim(cha2).eq.'6') THEN
write(*,*)'Using conserving algorithm ...'
!
!____________ for statistics (10%, 20%, ...)
ijk=0
j0=NPLWV/10
!
iPnt=0
rCharge=0.0
do iZ=0,NGZ-1
do iY=0,NGY-1
do iX=0,NGX-1
!_____________ ask whether the point (iX,iY,iZ) is inside the box
call ask_box(iX,iY,iZ,Center,Sides,RecipS,DIRC,iask)
if(iask.eq.'y') then
iPnt=iPnt+1
rCharge = rCharge + grid(iX+1,iY+1,iZ+1)
end if
!______________ statistics
ijk=ijk+1
if(ijk/j0*j0.eq.ijk) &
write(*,'(a,i3,a)') '... done ',ijk/j0*10,' %'
end do
end do
end do
TotCh=rCharge/NPLWV
!
![7]_________ in the loop over all cells in the box: use the fine grid NRs()
! to integrate the charge and find its position in the cell
!
ELSE IF(trim(cha2).eq.'7') THEN
write(*,'(a)') &
'Opening the file <charges.sim> for simulation charges...'
open(31,file='charges.sim',form='formatted',status='unknown')
!
!____________ position of the box in the original unit cell (its corner)
!
dV=VolCell/(NRs(1)*NRs(2)*NRs(3))
factor=dV/VOLC
write(*,*)'Using nonconserving algorithm ...'
chdens=0.0
j=0
Qsmall=10000.0
Qlarge=0.0
DO N1=0,ngrid(1)-1
DO N2=0,ngrid(2)-1
DO N3=0,ngrid(3)-1
!____________________ position of the cell in the box
x(1)= N1*vect(1,1)+N2*vect(2,1)+N3*vect(3,1)
x(2)= N1*vect(1,2)+N2*vect(2,2)+N3*vect(3,2)
x(3)= N1*vect(1,3)+N2*vect(2,3)+N3*vect(3,3)
!____________________ position of the cell in the original unit cell
R(1)=x(1)+corner(1)
R(2)=x(2)+corner(2)
R(3)=x(3)+corner(3)
!____________________ integrate the charge in the current cell (rCharge)
! and determine the position of the charge (PosCh)
rCharge=0.0
PosCh(1)=0.0
PosCh(2)=0.0
PosCh(3)=0.0
do k1=0,NRs(1)-1
do k2=0,NRs(2)-1
do k3=0,NRs(3)-1
R2(1)= k1*vecB(1,1)+k2*vecB(2,1)+k3*vecB(3,1)
R2(2)= k1*vecB(1,2)+k2*vecB(2,2)+k3*vecB(3,2)
R2(3)= k1*vecB(1,3)+k2*vecB(2,3)+k3*vecB(3,3)
R1(1)= R2(1)+R(1)
R1(2)= R2(2)+R(2)
R1(3)= R2(3)+R(3)
call reducn(R1,DIRC,BCELL)
call interpolate(R1,BCELL,denval,grid)
den=denval*factor
rCharge = rCharge + den
chdens=chdens + den
PosCh(1)=PosCh(1)+R2(1)*den
PosCh(2)=PosCh(2)+R2(2)*den
PosCh(3)=PosCh(3)+R2(3)*den
end do
end do
end do
!______________________ write the simulating charges to the file;
! find the smallest and the largest charge
if(rCharge.gt.0.0001) then
j=j+1
PosCh(1)=PosCh(1)/rCharge+R(1)
PosCh(2)=PosCh(2)/rCharge+R(2)
PosCh(3)=PosCh(3)/rCharge+R(3)
write(31,'(i5,5x,3(f10.5,x),5x,e16.10)') &
j,(PosCh(i),i=1,3), -rCharge
if(rCharge.ge.Qlarge) Qlarge=rCharge
if(rCharge.le.Qsmall) Qsmall=rCharge
end if
END DO
END DO
END DO
close (31)
WRITE(*,*)'Done! The file <charges.sim> created!'
Nchrg1=j
Yes_Do=.true.
!
![8]__________ show point charges by 15 at a time
!
ELSE IF(trim(cha2).eq.'8' .and. Yes_Do) THEN
write(*,'(a)') &
'Opening the file <charges.sim> for simulation charges...'
open(31,file='charges.sim',form='formatted',status='old')
j=0
46 read(31,*,err=49,end=49) jj, (x(i),i=1,3),rCh
j=j+1
if(j.eq.16) then
j=0
write(*,*)'Press ENTER when ready ...'
read(*,*)
end if
write(*,'(a,i5,a,f10.5,a,3(1x,f10.5))') &
'ch(',jj,')= ',rCh, ' at ',(x(i),i=1,3)
go to 46
49 close (31)
write(*,*)'Press ENTER when ready ...'
read(*,*)
!
![88]__________ visualise point charges
!
ELSE IF(trim(cha2).eq.'88' .and. Yes_Do) THEN
dQ=(Qlarge-Qsmall)/11.0
write(*,*)'Creating a clever input for Xmol ...'
write(*,'(a)') &
'Opening the file <charges.sim> for simulation charges...'
open(31,file='charges.sim',form='formatted',status='old')
write(*,'(a)') &
'Creating the file <charges.xyz> for simulation charges...'
open(33,file='charges.xyz',form='formatted',status='unknown')
write(33,'(i10/)') Nchrg1
86 read(31,*,err=89,end=89) j, (x(i),i=1,3),rCh
do i=1,11
Qleft=Qsmall+dQ*(i-1)
Qright=Qleft+dQ
if(i.eq.11) Qright=Qlarge+0.00001
if(i.eq.1) Qleft=Qsmall-0.00001
if(-rCh.ge.Qleft.and.-rCh.lt.Qright) then
if(i.le.9) then
write(cha1,'(i1)') i
cha2=cha1//' '
else
write(cha2,'(i2)') i
endif
write(33,'(a,5x,3(x,f10.5))')'LV'//cha2,(x(j),j=1,3)
go to 86
end if
end do
write(*,'(a,i5,x,f10.5)') 'ERROR! charge j=',j,rCh
go to 86
89 close (31)
close (33)
!
![9]__________ the number of unit cells where the potential will be calculated
! to assess the convergence
!
ELSE IF(trim(cha2).eq.'9' .and. Yes_Do) THEN
Ncell=(2*NN0+1)**3
43 WRITE(*,'(a,i5,a)') 'Number of unit cell to check the '// &
'potential in (between 27 and ',Ncell,'):'
read(*,*,err=43) NunitCell
if(NunitCell.lt.27) go to 43
NN2=nint( (real(NunitCell)**(0.3333333)-1.)/2. )
if(NN2.gt.NN0) go to 43
Yes_Pot=.false.
!
![10]__________ calculate/compare potential at the center of the neighbouring cells
!
ELSE IF(trim(cha2).eq.'10' .and. Yes_Do) THEN
if(Yes_Pot) then
Poten1=0.0
else
Poten=0.0
end if
write(*,'(a)') 'Opening the file <charges.sim> for simulation charges...'
open(31,file='charges.sim',form='formatted',status='old')
56 read(31,*,err=59,end=59) j, (x(i),i=1,3),rCh
do i1=-NN2,NN2
do i2=-NN2,NN2
do 37 i3=-NN2,NN2
R(1)=i1*DIRC(1,1)+i2*DIRC(2,1)+i3*DIRC(3,1)-x(1)
R(2)=i1*DIRC(1,2)+i2*DIRC(2,2)+i3*DIRC(3,2)-x(2)
R(3)=i1*DIRC(1,3)+i2*DIRC(2,3)+i3*DIRC(3,3)-x(3)
if(i1.eq.0.and.i2.eq.0.and.i3.eq.0) go to 37
ar=sqrt(r(1)*r(1)+r(2)*r(2)+r(3)*r(3))
if(Yes_Pot) then
Poten1(i1,i2,i3)=Poten1(i1,i2,i3)+rCh/ar
else
Poten(i1,i2,i3)=Poten(i1,i2,i3)+rCh/ar
end if
37 end do
end do
end do
go to 56
59 close (31)
if(Yes_Pot) then
Pot_Diff=0.0
do i1=-NN2,NN2
do i2=-NN2,NN2
do i3=-NN2,NN2
a=Poten(i1,i2,i3)-Poten1(i1,i2,i3)
Pot_Diff=Pot_Diff+abs(a)
Poten(i1,i2,i3)=Poten1(i1,i2,i3)
end do
end do
end do
Yes_Comp=.true.
end if
Yes_Pot=.true.
!
![11]_________ calculate the dipole moment of the simulated charge distribution
!
ELSE IF(trim(cha2).eq.'11' .and. Yes_Do) THEN
Dip=0.0
!______________ useful input for the Madelung code (separate)
nat=0
do k=1,NSPEC
do j=1,NspN(k)
nat=nat+1
end do
end do
open(41,file='mad.inp',form='formatted',status='unknown')
write(41,*) Nchrg1+nat
!_________________ nuclear part first
77 write(*,*)'Specify nucleii charges in the order of species:'
read(*,*,err=77) (Z_atom(i),i=1,NSPEC)
nat=0
do k=1,NSPEC
do j=1,NspN(k)
nat=nat+1
!___________________(a) find the right image of this nuclei which is
! inside the box
do n1=-1,1
do n2=-1,1
do n3=-1,1
x(1)=n1*DIRC(1,1)+n2*DIRC(2,1)+n3*DIRC(3,1)+TI(1,nat)
x(2)=n1*DIRC(1,2)+n2*DIRC(2,2)+n3*DIRC(3,2)+TI(2,nat)
x(3)=n1*DIRC(1,3)+n2*DIRC(2,3)+n3*DIRC(3,3)+TI(3,nat)
call ask_box2(x,Center,Sides,RecipS,iask)
if(iask.eq.'y') go to 33
end do
end do
end do
write(*,'(a,i5,a)') &
'ERROR: atom nat=',nat,' is not inside the box!'
write(*,'(a)') 'Make sure the box is large enough!'
go to 1
!___________________(b) calculate the contribution to the dipole moment
33 Dip(1)=Dip(1)+Z_atom(k)*(x(1)-Center(1))
Dip(2)=Dip(2)+Z_atom(k)*(x(2)-Center(2))
Dip(3)=Dip(3)+Z_atom(k)*(x(3)-Center(3))
write(*,'(a,2i4,a,i4,a,3(x,f10.5))')'Atom ',k,j, &
' charge= ',Z_atom(k),' position ',(x(i),i=1,3)
write(41,'(3(f10.5,x),i5)') (x(i),i=1,3),Z_atom(k)
end do
end do
!_________________ electronic part second
write(*,'(a)')'Opening the file <charges.sim> for simulation charges...'
open(31,file='charges.sim',form='formatted',status='old')
ch=0.0
76 read(31,*,err=79,end=79) j, (x(i),i=1,3),rCh
write(41,'(5x,4(f13.8,x))') (x(i),i=1,3),rCh
do i=1,3
Dip(i)=Dip(i)+rCh*(x(i)-Center(i))
end do
ch=ch+rCh
go to 76
79 close (31)
close (41)
jj=j
write(*,'(a,i10)') 'Number of electronic charges found =',jj
write(*,'(a,f10.5)')'Electronic charge found = ',ch
dipm=sqrt(Dip(1)*Dip(1)+Dip(2)*Dip(2)+Dip(3)*Dip(3))
Yes_Dip=.true.
!
![Co].... display atomic positions
!
ELSE IF(trim(cha2).eq.'Co') THEN
call show_atoms()
!
!__________ return to the previous menu
!
ELSE IF(trim(cha2).eq.'Q') THEN
deallocate(Poten)
deallocate(Poten1)
return
ELSE
write(*,*)'ERROR! Try again!'
END IF
go to 1
end subroutine simul_box
subroutine cut_atoms(grid,totdens)
!....................................................................
! The density corresponding to specified atoms will be cut out of
! the density by assigning zeros to the corresponding grid points.
!....................................................................
use param
use atoms
use menu
implicit none
real*8,parameter :: tiny=0.01
real*8 GRID(NGX,NGY,NGZ),R(3),totdens,drad,rCharge1,rCharge2,rCharge3,charg
real*8 rad,factor,dx,dv,c1,rad1,ar,rad2,c2,rCharge4,charge_tot,rCharge,denval
real*8,dimension(:),allocatable :: RadCut,NumE_asked,NumE_nonconserv,NumE_conserv
integer,dimension(:),allocatable :: NumAt
character iask,line*40,answer,cha2*2
logical Yes_Spec,Yes_Rad,Yes_Cut
integer iQuit,NumAtCut,jj,i,im,j,iPnt,iPnt3,i0,i1,n1,n2,jj0,nat,ii,iz,iy,ix
integer k1,k2,k3,isp,ijk,j0
real*8 :: TinyCh=0.0
!......................................................................
!_____ choose the starting point, the smallest and the largest radii,
! the number of points in between and the grid inside the sphere.
! iQuit = 0 - not quit, proceed with plotting in the parent program;
! 1 - quit, do not proceed with plotting.
! method='nonconserv' - for a "non-conserving" algorithm when we scan the
! sphere rather than the UC so that each point
! may enter several times.
!......................................................................
allocate(RadCut(NIONS))
allocate(NumAt(NIONS))
allocate(NumE_asked(NIONS))
allocate(NumE_nonconserv(NIONS))
allocate(NumE_conserv(NIONS))
!
Yes_Spec=.false.
Yes_Rad=.false.
Yes_Cut=.false.
1 iQuit=0
write(*,*)'..............MENU for CUT ...........................'
write(*,*)'......... Change these parameters if necessary:.......'
write(*,*)
write(*,'(a)') '>>>>> Representation of results: through number of electrons'
write(*,'(a)') '>>>>> Algorithm for the charge integration: <nonconserving>'
if(.not.Yes_Spec) then
iQuit=1
NumAtCut=0
jj=0
write(*,'(a)') &
' 1. Specify atoms/electrons to be cut out of the density:'
else
jj=NumAtCut
write(*,'(a)')' 1. Atoms to be cut out of the density:'
write(*,'(a,i5,a)') &
' To be cut ',NumAtCut,' atoms with numbers(electrons):'
do i=1,NumAtCut,6
im=i+5
if(NumAtCut-i.lt.6) im=NumAtCut
write(*,'(5x,15(i3,a,f6.2,a,x))') (NumAt(j),'(',NumE_asked(j),')',j=i,im)
end do
end if
write(*,'(a39,f10.5)') ' 2. The smallest radius (Angstroms): ', RadiusS
write(*,'(a38,f10.5)') ' 3. The largest radius (Angstroms): ',RadiusL
if(Nrad.lt.3) then
iQuit=1
write(*,'(a)') ' 4. The number of points between '// &
'these radii: ... undefined ...'
else
write(*,'(a48,i5)') &
' 4. The number of points between these radii: ',Nrad
dRad=(RadiusL-RadiusS)/(Nrad-1)
end if
write(*,'(a48,i5)') ' 5. X,Y,Z integration grid inside the sphere: ',NRESOLs
if(NRESOLs.le.1) iQuit=1
if(Yes_Rad) then
write(*,'(a)') ' 6. Scan atoms to obtain the radii using charge to cut <= DONE!'
write(*,'(a)') ' 7. Show the list of atoms and their radii + '// &
' exact charge to be cut out'
write(*,'(a,e12.6)') ' 8. The threshhold: the smallest density allowed: ',TinyCh
write(*,'(a)') ' 9. Cut atoms out (current density (in memory) is destroyed!)'
if(Yes_Cut) then
write(*,'(5x,a,f10.5)') &
'Out of the total original density = ',rCharge1
write(*,'(5x,a,i10)') &
'... grid points removed due to radii = ',iPnt
write(*,'(5x,a,f10.5)') &
'... with the density cut out = ',rCharge2
write(*,'(5x,a,i10)') &
'... add. grid points removed due to threshold = ',iPnt3
write(*,'(5x,a,e12.6)') &
'... with the density cut out = ',rCharge4
write(*,'(5x,a,f10.5)') &
'... so that the TOTAL density left is = ',rCharge3
write(*,'(a)') ' 10. Write charges cut out + core charges into a file'
end if
else
write(*,'(a)') ' 6. Scan atoms to obtain the radii using charge to cut'
end if
write(*,'(a)') '------- A t o m i c p o s i t i o n s ---------'
write(*,'(a)') ' Co. Show current atomic positions in fractional/Cartesian'
write(*,'(a)') '------ L e a v e t h e m e n u -------------'
write(*,'(a)')' Q. Return to the previous menu'
write(*,*)
write(*,*)'------> Choose the item and press ENTER:'
read (*,'(a)',err=1) cha2
!
![1]__________ specify atoms/electrons to be cut of the density
!
IF(trim(cha2).eq.'1') THEN
40 write(*,*)'Specify/edit the group of atoms as #1 - #2 '
write(*,*)'associated with the same number of electrons:'
read(*,'(a)') line
do i=1,40
if(line(i:i).eq.'-') go to 41
end do
write(*,*)'ERROR! Dash need to be specified explicitly!'
go to 40
41 i0=i-1
i1=i+1
read(line(:i0),*,err=40) n1
if(n1.lt.1 .or. n1.gt.NIONS) then
write(*,*)'ERROR in the first number!'
go to 40
end if
read(line(i1:),*,err=40) n2
if(n2.lt.n1 .or. n2.gt.NIONS) then
write(*,*)'ERROR in the second number!'
go to 40
end if
42 write(*,*)'Specify electronic charge to be associated' &
//' with these atoms (f10.5)'
read(*,*,err=42) charg
jj0=jj
do 45 i=n1,n2
if(NumAtCut.ne.0) then
do j=1,jj0
if(NumAt(j).eq.i) then
NumE_asked(j)=charg
write(*,'(a,i5,a)') &
'... the target charge on atom',i,' is changed'
go to 45
end if
end do
end if
jj=jj+1
NumAt(jj)=i
NumE_asked(jj)=charg
45 end do
NumAtCut=jj
Yes_Rad=.false.
Yes_Spec=.true.
!
![2,3]__________ give radii
!
ELSE IF(trim(cha2).eq.'2') THEN
10 write(*,*) 'Enter the smallest radius > 0.0 (in Angstroms):'
read(*,*,err=10) RadiusS
if(RadiusS.lt.tiny) go to 10
Yes_Rad=.false.
ELSE IF(trim(cha2).eq.'3') THEN
11 write(*,*) 'Enter the largest radius (in Angstroms):'
read(*,*,err=11) RadiusL
if(RadiusL.lt.0.0) go to 11
Yes_Rad=.false.
!
![4]__________ number of points between RadiusS and RadiusL
!
ELSE IF(trim(cha2).eq.'4') THEN
997 write(*,'(a31,f10.5,a4,f10.5)') 'Give the number of '// &
'different radii: '
read(*,*,err=997) Nrad
if(Nrad.lt.1) go to 997
Yes_Rad=.false.
!
![5]__________ number of grid points inside the sphere
!
ELSE IF(trim(cha2).eq.'5') THEN
996 write(*,*)'Give this number:'
read(*,*,err=996) NRESOLs
if(NRESOLs.lt.2) go to 996
Yes_Rad=.false.
!
![6]__________ calculation: scan all atoms specified in NatAt();
! for every atom loop over radii from RadiusS till RadiusL to
! integrate the charge (possible overalp of spheres is ignored),
! and then interpolate the radius to match the charge in NumE_asked().
! The result is a vector of radii RadCut(i), i=1,..,NumAtCut
!
ELSE IF(trim(cha2).eq.'6') THEN
if(iQuit.ne.0) then
write(*,*)'ERROR! You still have undefined parameters!'
go to 1
end if
DO nat=1,NumAtCut
ii=NumAt(nat)
write(*,'(a,i3)')'Working on the charge for atom ',nat
!__________ get the charge versus radius for this atom.
!__________ make the fitting: get the radius RadCut(nat) to
! match the charge NumE_asked(nat) (linear interpolation)
!
rad1=0.0
c1=0.0
do i=1,Nrad
Rad = dRad * (i-1) + RadiusS
dX=Rad/(NRESOLs/2)
dV=dX*dX*dX
factor=dV/VOLC
!
!_________ charge "non-conserving" algorithm:
! Scan a net of points inside the sphere of Radius using NRESOLs
! and calculate the amount of charge inside Radius
!
rCharge=0.0
do k1=-NRESOLs/2,NRESOLs/2
do k2=-NRESOLs/2,NRESOLs/2
do k3=-NRESOLs/2,NRESOLs/2
R(1)= dX*k1
R(2)= dX*k2
R(3)= dX*k3
aR=sqrt(R(1)*R(1)+R(2)*R(2)+R(3)*R(3))
if(aR.le.Rad) then
R(1)=R(1)+TI(1,ii)
R(2)=R(2)+TI(2,ii)
R(3)=R(3)+TI(3,ii)
call reducn(R,DIRC,BCELL)
call interpolate(R,BCELL,denval,grid)
rCharge = rCharge + denval
end if
end do
end do
end do
charg = rCharge*factor
write(*,'(2(a,f10.5))') '>>> Rad= ',Rad,' charge= ',charg
!______________ check for the interpolation interval
if(NumE_asked(nat).ge.c1 .and. &
NumE_asked(nat).le.charg) then
rad2=Rad
c2=charg
go to 80
else
rad1=Rad
c1=charg
end if
end do
!______________ error: RadiusL is probably too small
write(*,'(a,i3)') &
'ERROR! Cannot find the fit for the atom nat=',nat
go to 1
!_____________ fit the radius
80 RadCut(nat)=rad1+(NumE_asked(nat)-c1)/(c2-c1)*(rad2-rad1)
!
!_____________ calculate the charge using "non-conserving" algorithm again
! for the interpolated radius
!
rCharge=0.0
do k1=-NRESOLs/2,NRESOLs/2
do k2=-NRESOLs/2,NRESOLs/2
do k3=-NRESOLs/2,NRESOLs/2
R(1)= dX*k1
R(2)= dX*k2
R(3)= dX*k3
aR=sqrt(R(1)*R(1)+R(2)*R(2)+R(3)*R(3))
if(aR.le.RadCut(nat)) then