-
Notifications
You must be signed in to change notification settings - Fork 120
/
Copy pathcontroller.c
267 lines (218 loc) · 8.43 KB
/
controller.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#include "ACMSim.h"
/* PI Control
* */
#define INCREMENTAL_PID TRUE
#if INCREMENTAL_PID
double PID(struct PID_Reg *r, double err){
#define O_STATE r->o_state
#define E_STATE r->e_state
#define I_LIMIT r->i_limit
double delta_u_n;
delta_u_n = r->Kp * ( err - E_STATE ) + r->Ki * err;
double output;
output = O_STATE + delta_u_n;
if(output > I_LIMIT)
output = I_LIMIT;
else if(output < -I_LIMIT)
output = -I_LIMIT;
E_STATE = err;
O_STATE = output;
return output;
#undef O_STATE
#undef E_STATE
#undef I_LIMIT
}
#else
double PID(struct PID_Reg *r, double err){
#define DYNAMIC_CLAPMING TRUE
#define I_STATE r->i_state
#define I_LIMIT r->i_limit
double output;
double P_output;
P_output = err * r->Kp; // 比例
I_STATE += err * r->Ki; // 积分
// 添加积分饱和特性
#if DYNAMIC_CLAPMING
// dynamic clamping
if( I_STATE > I_LIMIT - P_output)
I_STATE = I_LIMIT - P_output;
else if( I_STATE < -I_LIMIT - P_output)
I_STATE = -I_LIMIT - P_output;
#else
// static clamping
if( I_STATE > I_LIMIT)
I_STATE = I_LIMIT;
else if( I_STATE < -I_LIMIT)
I_STATE = -I_LIMIT;
#endif
output = I_STATE + P_output;
if(output > I_LIMIT)
output = I_LIMIT;
else if(output < -I_LIMIT)
output = -I_LIMIT;
return output;
#undef I_STATE
#undef I_LIMIT
}
#endif
/* Initialization */
struct ControllerForExperiment CTRL;
void CTRL_init(){
int i=0,j=0;
CTRL.timebase = 0.0;
CTRL.ual = 0.0;
CTRL.ube = 0.0;
CTRL.R = ACM.R;
CTRL.KE = ACM.KE;
CTRL.Ld = ACM.Ld;
CTRL.Lq = ACM.Lq;
// CTRL.Tload = 0.0;
// CTRL.rpm_cmd = 0.0;
CTRL.npp = ACM.npp;
CTRL.Js = ACM.Js;
CTRL.Js_inv = 1.0 / CTRL.Js;
CTRL.omg__fb = 0.0;
CTRL.ial__fb = 0.0;
CTRL.ibe__fb = 0.0;
CTRL.psi_mu_al__fb = 0.0;
CTRL.psi_mu_be__fb = 0.0;
CTRL.rotor_flux_cmd = 0.0; // id=0 control
CTRL.omg_ctrl_err = 0.0;
CTRL.speed_ctrl_err = 0.0;
CTRL.cosT = 1.0;
CTRL.sinT = 0.0;
CTRL.omega_syn = 0.0;
CTRL.theta_d__fb = 0.0;
CTRL.id__fb = 0.0;
CTRL.iq__fb = 0.0;
CTRL.ud_cmd = 0.0;
CTRL.uq_cmd = 0.0;
CTRL.id_cmd = 0.0;
CTRL.iq_cmd = 0.0;
CTRL.Tem = 0.0;
CTRL.Tem_cmd = 0.0;
// ver. IEMDC
CTRL.PID_speed.Kp = SPEED_LOOP_PID_PROPORTIONAL_GAIN;
CTRL.PID_speed.Ti = SPEED_LOOP_PID_INTEGRAL_TIME_CONSTANT;
CTRL.PID_speed.Ki = CTRL.PID_speed.Kp / CTRL.PID_speed.Ti * (TS*SPEED_LOOP_CEILING); // 4.77 = 1 / (npp*1/60*2*pi)
CTRL.PID_speed.i_limit = SPEED_LOOP_LIMIT_NEWTON_METER;
CTRL.PID_speed.i_state = 0.0;
printf("Speed PID: Kp=%g, Ki=%g, limit=%g Nm\n", CTRL.PID_speed.Kp, CTRL.PID_speed.Ki/TS, CTRL.PID_speed.i_limit);
CTRL.PID_id.Kp = CURRENT_LOOP_PID_PROPORTIONAL_GAIN; // cutoff frequency of 1530 rad/s
CTRL.PID_id.Ti = CURRENT_LOOP_PID_INTEGRAL_TIME_CONSTANT;
CTRL.PID_id.Ki = CTRL.PID_id.Kp/CTRL.PID_id.Ti*TS; // =0.025
CTRL.PID_id.i_limit = CURRENT_LOOP_LIMIT_VOLTS; //350.0; // unit: Volt
CTRL.PID_id.i_state = 0.0;
printf("Current PID: Kp=%g, Ki=%g, limit=%g V\n", CTRL.PID_id.Kp, CTRL.PID_id.Ki/TS, CTRL.PID_id.i_limit);
CTRL.PID_iq.Kp = CURRENT_LOOP_PID_PROPORTIONAL_GAIN;
CTRL.PID_iq.Ti = CURRENT_LOOP_PID_INTEGRAL_TIME_CONSTANT;
CTRL.PID_iq.Ki = CTRL.PID_iq.Kp/CTRL.PID_iq.Ti*TS;
CTRL.PID_iq.i_limit = CURRENT_LOOP_LIMIT_VOLTS; // unit: Volt, 350V->max 1300rpm
CTRL.PID_iq.i_state = 0.0;
}
double theta_d_harnefors = 0.0;
double omg_harnefors = 0.0;
void harnefors_scvm(){
#define KE_MISMATCH 1.0 // 0.7
double d_axis_emf;
double q_axis_emf;
#define LAMBDA 2 // 2
#define CJH_TUNING_A 25 // 1
#define CJH_TUNING_B 1 // 1
double lambda_s = LAMBDA * sign(omg_harnefors);
double alpha_bw_lpf = CJH_TUNING_A*0.1*(1500*RPM_2_RAD_PER_SEC) + CJH_TUNING_B*2*LAMBDA*fabs(omg_harnefors);
// d_axis_emf = CTRL.ud_cmd - 1*CTRL.R*CTRL.id_cmd + omg_harnefors*1.0*CTRL.Lq*CTRL.iq_cmd; // If Ld=Lq.
// q_axis_emf = CTRL.uq_cmd - 1*CTRL.R*CTRL.iq_cmd - omg_harnefors*1.0*CTRL.Ld*CTRL.id_cmd; // If Ld=Lq.
d_axis_emf = CTRL.ud_cmd - 1*CTRL.R*CTRL.id_cmd + omg_harnefors*1.0*CTRL.Lq*CTRL.iq_cmd; // eemf
q_axis_emf = CTRL.uq_cmd - 1*CTRL.R*CTRL.iq_cmd - omg_harnefors*1.0*CTRL.Lq*CTRL.id_cmd; // eemf
// Note it is bad habit to write numerical integration explictly like this. The states on the right may be accencidentally modified on the run.
theta_d_harnefors += TS * omg_harnefors;
omg_harnefors += TS * alpha_bw_lpf * ( (q_axis_emf - lambda_s*d_axis_emf)/(CTRL.KE*KE_MISMATCH+(CTRL.Ld-CTRL.Lq)*CTRL.id_cmd) - omg_harnefors );
while(theta_d_harnefors>M_PI) theta_d_harnefors-=2*M_PI;
while(theta_d_harnefors<-M_PI) theta_d_harnefors+=2*M_PI;
}
void control(double speed_cmd, double speed_cmd_dot){
// Input 1 is feedback: estimated speed/position or measured speed/position
#if SENSORLESS_CONTROL
#if SENSORLESS_CONTROL_HFSI
CTRL.omg__fb = hfsi.omg_elec;
CTRL.theta_d__fb = hfsi.theta_d;
#else
// getch("Not Implemented");
// CTRL.omg__fb ;
// CTRL.omega_syn ;
// CTRL.omg__fb = OB_OMG;
// CTRL.theta_d__fb = OB_POS;
harnefors_scvm();
CTRL.omg__fb = omg_harnefors;
CTRL.theta_d__fb = theta_d_harnefors;
#endif
#else
// from measurement() in main.c
CTRL.omg__fb = sm.omg_elec;
CTRL.theta_d__fb = sm.theta_d;
#endif
// Input 2 is feedback: measured current
CTRL.ial__fb = IS_C(0);
CTRL.ibe__fb = IS_C(1);
// Input 3 is the flux linkage command
#if CONTROL_STRATEGY == NULL_D_AXIS_CURRENT_CONTROL
CTRL.rotor_flux_cmd = 0.0;
CTRL.cosT = cos(CTRL.theta_d__fb);
CTRL.sinT = sin(CTRL.theta_d__fb);
#else
getch("Not Implemented");
#endif
// d-axis current command
CTRL.id_cmd = CTRL.rotor_flux_cmd / CTRL.Ld;
// q-axis current command
static int vc_count = 0;
if(vc_count++ == SPEED_LOOP_CEILING){
// velocity control loop execution frequency is 40 times slower than current control loop execution frequency
vc_count = 0;
CTRL.omg_ctrl_err = CTRL.omg__fb - speed_cmd*RPM_2_RAD_PER_SEC;
CTRL.iq_cmd = - PID(&CTRL.PID_speed, CTRL.omg_ctrl_err);
// for plot
CTRL.speed_ctrl_err = CTRL.omg_ctrl_err * RAD_PER_SEC_2_RPM;
}
// Measured current in d-q frame
CTRL.id__fb = AB2M(CTRL.ial__fb, CTRL.ibe__fb, CTRL.cosT, CTRL.sinT);
CTRL.iq__fb = AB2T(CTRL.ial__fb, CTRL.ibe__fb, CTRL.cosT, CTRL.sinT);
// For luenberger position observer for HFSI
CTRL.Tem = CTRL.npp * (CTRL.KE*CTRL.iq__fb + (CTRL.Ld-CTRL.Lq)*CTRL.id__fb*CTRL.iq__fb);
CTRL.Tem_cmd = CTRL.npp * (CTRL.KE*CTRL.iq_cmd + (CTRL.Ld-CTRL.Lq)*CTRL.id_cmd*CTRL.iq_cmd);
// Voltage command in d-q frame
double vd, vq;
vd = - PID(&CTRL.PID_id, CTRL.id__fb-CTRL.id_cmd);
vq = - PID(&CTRL.PID_iq, CTRL.iq__fb-CTRL.iq_cmd);
// Current loop decoupling (skipped for now)
CTRL.ud_cmd = vd;
CTRL.uq_cmd = vq;
#ifdef HFSI_ON
// Extra excitation for observation
{
static int dfe_counter = 0;
if(dfe_counter++==HFSI_CEILING){
dfe_counter = 0;
hfsi.square_wave_internal_register *= -1;
}
// hfsi.square_wave_internal_register *= -1;
CTRL.ud_cmd += HFSI_VOLTAGE*hfsi.square_wave_internal_register;
}
#endif
// Voltage command in alpha-beta frame
CTRL.ual = MT2A(CTRL.ud_cmd, CTRL.uq_cmd, CTRL.cosT, CTRL.sinT);
CTRL.ube = MT2B(CTRL.ud_cmd, CTRL.uq_cmd, CTRL.cosT, CTRL.sinT);
}
/* Command */
void cmd_fast_speed_reversal(double timebase, double instant, double interval, double rpm_cmd){
if(timebase > instant+2*interval){
ACM.rpm_cmd = 1*1500 + rpm_cmd;
}else if(timebase > instant+interval){
ACM.rpm_cmd = 1*1500 + -rpm_cmd;
}else if(timebase > instant){
ACM.rpm_cmd = 1*1500 + rpm_cmd;
}else{
ACM.rpm_cmd = 20; // default initial command
}
}