-
Notifications
You must be signed in to change notification settings - Fork 6
/
computeFourClusteringMetrics.m
708 lines (567 loc) · 18.2 KB
/
computeFourClusteringMetrics.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% The code to calculate four clustering evaluation metrics, namely, NMI, %
% ARI, Accuracy, and Purity. If you find the helpful in your research, %
% please cite the paper below. %
% %
% Dong Huang, Chang-Dong Wang, Jian-Huang Lai. %
% Fast Multi-view Clustering via Ensembles: Towards Scalability, %
% Superiority, and Simplicity. %
% IEEE Transactions on Knowledge and Data Engineering, accepted, 2023. %
% %
% The code has been tested in Matlab R2019b on a PC with Windows 10. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function results = computeFourClusteringMetrics(labels,true_labels)
result = ClusteringMeasure(true_labels,labels);
accuracy = result(1);
purity = result(3);
[ARI,RI,MI,HI]=valid_RandIndex(labels,true_labels);
NMI = NMImax(labels,true_labels);
results = [NMI,ARI,accuracy,purity];
function result = ClusteringMeasure(Y, predY)
if size(Y,2) ~= 1
Y = Y';
end;
if size(predY,2) ~= 1
predY = predY';
end;
n = length(Y);
uY = unique(Y);
nclass = length(uY);
Y0 = zeros(n,1);
if nclass ~= max(Y)
for i = 1:nclass
Y0(find(Y == uY(i))) = i;
end;
Y = Y0;
end;
uY = unique(predY);
nclass = length(uY);
predY0 = zeros(n,1);
if nclass ~= max(predY)
for i = 1:nclass
predY0(find(predY == uY(i))) = i;
end;
predY = predY0;
end;
Lidx = unique(Y); classnum = length(Lidx);
predLidx = unique(predY); pred_classnum = length(predLidx);
% purity
correnum = 0;
for ci = 1:pred_classnum
incluster = Y(find(predY == predLidx(ci)));
% cnub = unique(incluster);
% inclunub = 0;
% for cnubi = 1:length(cnub)
% inclunub(cnubi) = length(find(incluster == cnub(cnubi)));
% end;
inclunub = hist(incluster, 1:max(incluster)); if isempty(inclunub) inclunub=0;end;
correnum = correnum + max(inclunub);
end;
Purity = correnum/length(predY);
%if pred_classnum
res = bestMap(Y, predY);
% accuarcy
ACC = length(find(Y == res))/length(Y);
% NMI
MIhat = MutualInfo(Y,res);
result = [ACC MIhat Purity];
%%
function [newL2, c] = bestMap(L1,L2)
%bestmap: permute labels of L2 match L1 as good as possible
% [newL2] = bestMap(L1,L2);
%===========
L1 = L1(:);
L2 = L2(:);
if size(L1) ~= size(L2)
error('size(L1) must == size(L2)');
end
L1 = L1 - min(L1) + 1; % min (L1) <- 1;
L2 = L2 - min(L2) + 1; % min (L2) <- 1;
%=========== make bipartition graph ============
nClass = max(max(L1), max(L2));
G = zeros(nClass);
for i=1:nClass
for j=1:nClass
G(i,j) = length(find(L1 == i & L2 == j));
end
end
%=========== assign with hungarian method ======
[c,t] = hungarian(-G);
newL2 = zeros(nClass,1);
for i=1:nClass
newL2(L2 == i) = c(i);
end
%%
function MIhat = MutualInfo(L1,L2)
% mutual information
%===========
L1 = L1(:);
L2 = L2(:);
if size(L1) ~= size(L2)
error('size(L1) must == size(L2)');
end
L1 = L1 - min(L1) + 1; % min (L1) <- 1;
L2 = L2 - min(L2) + 1; % min (L2) <- 1;
%=========== make bipartition graph ============
nClass = max(max(L1), max(L2));
G = zeros(nClass);
for i=1:nClass
for j=1:nClass
G(i,j) = length(find(L1 == i & L2 == j))+eps;
end
end
sumG = sum(G(:));
%=========== calculate MIhat
P1 = sum(G,2); P1 = P1/sumG;
P2 = sum(G,1); P2 = P2/sumG;
H1 = sum(-P1.*log2(P1));
H2 = sum(-P2.*log2(P2));
P12 = G/sumG;
PPP = P12./repmat(P2,nClass,1)./repmat(P1,1,nClass);
PPP(abs(PPP) < 1e-12) = 1;
MI = sum(P12(:) .* log2(PPP(:)));
MIhat = MI / max(H1,H2);
%%%%%%%%%%%%% why complex ? %%%%%%%%
MIhat = real(MIhat);
%%
function [C,T]=hungarian(A)
%HUNGARIAN Solve the Assignment problem using the Hungarian method.
%
%[C,T]=hungarian(A)
%A - a square cost matrix.
%C - the optimal assignment.
%T - the cost of the optimal assignment.
%s.t. T = trace(A(C,:)) is minimized over all possible assignments.
% Adapted from the FORTRAN IV code in Carpaneto and Toth, "Algorithm 548:
% Solution of the assignment problem [H]", ACM Transactions on
% Mathematical Software, 6(1):104-111, 1980.
% v1.0 96-06-14. Niclas Borlin, [email protected].
% Department of Computing Science, Ume? University,
% Sweden.
% All standard disclaimers apply.
% A substantial effort was put into this code. If you use it for a
% publication or otherwise, please include an acknowledgement or at least
% notify me by email. /Niclas
[m,n]=size(A);
if (m~=n)
error('HUNGARIAN: Cost matrix must be square!');
end
% Save original cost matrix.
orig=A;
% Reduce matrix.
A=hminired(A);
% Do an initial assignment.
[A,C,U]=hminiass(A);
% Repeat while we have unassigned rows.
while (U(n+1))
% Start with no path, no unchecked zeros, and no unexplored rows.
LR=zeros(1,n);
LC=zeros(1,n);
CH=zeros(1,n);
RH=[zeros(1,n) -1];
% No labelled columns.
SLC=[];
% Start path in first unassigned row.
r=U(n+1);
% Mark row with end-of-path label.
LR(r)=-1;
% Insert row first in labelled row set.
SLR=r;
% Repeat until we manage to find an assignable zero.
while (1)
% If there are free zeros in row r
if (A(r,n+1)~=0)
% ...get column of first free zero.
l=-A(r,n+1);
% If there are more free zeros in row r and row r in not
% yet marked as unexplored..
if (A(r,l)~=0 & RH(r)==0)
% Insert row r first in unexplored list.
RH(r)=RH(n+1);
RH(n+1)=r;
% Mark in which column the next unexplored zero in this row
% is.
CH(r)=-A(r,l);
end
else
% If all rows are explored..
if (RH(n+1)<=0)
% Reduce matrix.
[A,CH,RH]=hmreduce(A,CH,RH,LC,LR,SLC,SLR);
end
% Re-start with first unexplored row.
r=RH(n+1);
% Get column of next free zero in row r.
l=CH(r);
% Advance "column of next free zero".
CH(r)=-A(r,l);
% If this zero is last in the list..
if (A(r,l)==0)
% ...remove row r from unexplored list.
RH(n+1)=RH(r);
RH(r)=0;
end
end
% While the column l is labelled, i.e. in path.
while (LC(l)~=0)
% If row r is explored..
if (RH(r)==0)
% If all rows are explored..
if (RH(n+1)<=0)
% Reduce cost matrix.
[A,CH,RH]=hmreduce(A,CH,RH,LC,LR,SLC,SLR);
end
% Re-start with first unexplored row.
r=RH(n+1);
end
% Get column of next free zero in row r.
l=CH(r);
% Advance "column of next free zero".
CH(r)=-A(r,l);
% If this zero is last in list..
if(A(r,l)==0)
% ...remove row r from unexplored list.
RH(n+1)=RH(r);
RH(r)=0;
end
end
% If the column found is unassigned..
if (C(l)==0)
% Flip all zeros along the path in LR,LC.
[A,C,U]=hmflip(A,C,LC,LR,U,l,r);
% ...and exit to continue with next unassigned row.
break;
else
% ...else add zero to path.
% Label column l with row r.
LC(l)=r;
% Add l to the set of labelled columns.
SLC=[SLC l];
% Continue with the row assigned to column l.
r=C(l);
% Label row r with column l.
LR(r)=l;
% Add r to the set of labelled rows.
SLR=[SLR r];
end
end
end
% Calculate the total cost.
T=sum(orig(logical(sparse(C,1:size(orig,2),1))));
function A=hminired(A)
%HMINIRED Initial reduction of cost matrix for the Hungarian method.
%
%B=assredin(A)
%A - the unreduced cost matris.
%B - the reduced cost matrix with linked zeros in each row.
% v1.0 96-06-13. Niclas Borlin, [email protected].
[m,n]=size(A);
% Subtract column-minimum values from each column.
colMin=min(A);
A=A-colMin(ones(n,1),:);
% Subtract row-minimum values from each row.
rowMin=min(A')';
A=A-rowMin(:,ones(1,n));
% Get positions of all zeros.
[i,j]=find(A==0);
% Extend A to give room for row zero list header column.
A(1,n+1)=0;
for k=1:n
% Get all column in this row.
cols=j(k==i)';
% Insert pointers in matrix.
A(k,[n+1 cols])=[-cols 0];
end
function [A,C,U]=hminiass(A)
%HMINIASS Initial assignment of the Hungarian method.
%
%[B,C,U]=hminiass(A)
%A - the reduced cost matrix.
%B - the reduced cost matrix, with assigned zeros removed from lists.
%C - a vector. C(J)=I means row I is assigned to column J,
% i.e. there is an assigned zero in position I,J.
%U - a vector with a linked list of unassigned rows.
% v1.0 96-06-14. Niclas Borlin, [email protected].
[n,np1]=size(A);
% Initalize return vectors.
C=zeros(1,n);
U=zeros(1,n+1);
% Initialize last/next zero "pointers".
LZ=zeros(1,n);
NZ=zeros(1,n);
for i=1:n
% Set j to first unassigned zero in row i.
lj=n+1;
j=-A(i,lj);
% Repeat until we have no more zeros (j==0) or we find a zero
% in an unassigned column (c(j)==0).
while (C(j)~=0)
% Advance lj and j in zero list.
lj=j;
j=-A(i,lj);
% Stop if we hit end of list.
if (j==0)
break;
end
end
if (j~=0)
% We found a zero in an unassigned column.
% Assign row i to column j.
C(j)=i;
% Remove A(i,j) from unassigned zero list.
A(i,lj)=A(i,j);
% Update next/last unassigned zero pointers.
NZ(i)=-A(i,j);
LZ(i)=lj;
% Indicate A(i,j) is an assigned zero.
A(i,j)=0;
else
% We found no zero in an unassigned column.
% Check all zeros in this row.
lj=n+1;
j=-A(i,lj);
% Check all zeros in this row for a suitable zero in another row.
while (j~=0)
% Check the in the row assigned to this column.
r=C(j);
% Pick up last/next pointers.
lm=LZ(r);
m=NZ(r);
% Check all unchecked zeros in free list of this row.
while (m~=0)
% Stop if we find an unassigned column.
if (C(m)==0)
break;
end
% Advance one step in list.
lm=m;
m=-A(r,lm);
end
if (m==0)
% We failed on row r. Continue with next zero on row i.
lj=j;
j=-A(i,lj);
else
% We found a zero in an unassigned column.
% Replace zero at (r,m) in unassigned list with zero at (r,j)
A(r,lm)=-j;
A(r,j)=A(r,m);
% Update last/next pointers in row r.
NZ(r)=-A(r,m);
LZ(r)=j;
% Mark A(r,m) as an assigned zero in the matrix . . .
A(r,m)=0;
% ...and in the assignment vector.
C(m)=r;
% Remove A(i,j) from unassigned list.
A(i,lj)=A(i,j);
% Update last/next pointers in row r.
NZ(i)=-A(i,j);
LZ(i)=lj;
% Mark A(r,m) as an assigned zero in the matrix . . .
A(i,j)=0;
% ...and in the assignment vector.
C(j)=i;
% Stop search.
break;
end
end
end
end
% Create vector with list of unassigned rows.
% Mark all rows have assignment.
r=zeros(1,n);
rows=C(C~=0);
r(rows)=rows;
empty=find(r==0);
% Create vector with linked list of unassigned rows.
U=zeros(1,n+1);
U([n+1 empty])=[empty 0];
function [A,C,U]=hmflip(A,C,LC,LR,U,l,r)
%HMFLIP Flip assignment state of all zeros along a path.
%
%[A,C,U]=hmflip(A,C,LC,LR,U,l,r)
%Input:
%A - the cost matrix.
%C - the assignment vector.
%LC - the column label vector.
%LR - the row label vector.
%U - the
%r,l - position of last zero in path.
%Output:
%A - updated cost matrix.
%C - updated assignment vector.
%U - updated unassigned row list vector.
% v1.0 96-06-14. Niclas Borlin, [email protected].
n=size(A,1);
while (1)
% Move assignment in column l to row r.
C(l)=r;
% Find zero to be removed from zero list..
% Find zero before this.
m=find(A(r,:)==-l);
% Link past this zero.
A(r,m)=A(r,l);
A(r,l)=0;
% If this was the first zero of the path..
if (LR(r)<0)
...remove row from unassigned row list and return.
U(n+1)=U(r);
U(r)=0;
return;
else
% Move back in this row along the path and get column of next zero.
l=LR(r);
% Insert zero at (r,l) first in zero list.
A(r,l)=A(r,n+1);
A(r,n+1)=-l;
% Continue back along the column to get row of next zero in path.
r=LC(l);
end
end
function [A,CH,RH]=hmreduce(A,CH,RH,LC,LR,SLC,SLR)
%HMREDUCE Reduce parts of cost matrix in the Hungerian method.
%
%[A,CH,RH]=hmreduce(A,CH,RH,LC,LR,SLC,SLR)
%Input:
%A - Cost matrix.
%CH - vector of column of 'next zeros' in each row.
%RH - vector with list of unexplored rows.
%LC - column labels.
%RC - row labels.
%SLC - set of column labels.
%SLR - set of row labels.
%
%Output:
%A - Reduced cost matrix.
%CH - Updated vector of 'next zeros' in each row.
%RH - Updated vector of unexplored rows.
% v1.0 96-06-14. Niclas Borlin, [email protected].
n=size(A,1);
% Find which rows are covered, i.e. unlabelled.
coveredRows=LR==0;
% Find which columns are covered, i.e. labelled.
coveredCols=LC~=0;
r=find(~coveredRows);
c=find(~coveredCols);
% Get minimum of uncovered elements.
m=min(min(A(r,c)));
% Subtract minimum from all uncovered elements.
A(r,c)=A(r,c)-m;
% Check all uncovered columns..
for j=c
% ...and uncovered rows in path order..
for i=SLR
% If this is a (new) zero..
if (A(i,j)==0)
% If the row is not in unexplored list..
if (RH(i)==0)
% ...insert it first in unexplored list.
RH(i)=RH(n+1);
RH(n+1)=i;
% Mark this zero as "next free" in this row.
CH(i)=j;
end
% Find last unassigned zero on row I.
row=A(i,:);
colsInList=-row(row<0);
if (length(colsInList)==0)
% No zeros in the list.
l=n+1;
else
l=colsInList(row(colsInList)==0);
end
% Append this zero to end of list.
A(i,l)=-j;
end
end
end
% Add minimum to all doubly covered elements.
r=find(coveredRows);
c=find(coveredCols);
% Take care of the zeros we will remove.
[i,j]=find(A(r,c)<=0);
i=r(i);
j=c(j);
for k=1:length(i)
% Find zero before this in this row.
lj=find(A(i(k),:)==-j(k));
% Link past it.
A(i(k),lj)=A(i(k),j(k));
% Mark it as assigned.
A(i(k),j(k))=0;
end
A(r,c)=A(r,c)+m;
function [AR,RI,MI,HI]=valid_RandIndex(c1,c2)
% =========================================================================
% RANDINDEX - calculates Rand Indices to compare two partitions
% ARI=RANDINDEX(c1,c2), where c1,c2 are vectors listing the
% class membership, returns the "Hubert & Arabie adjusted Rand index".
% [AR,RI,MI,HI]=RANDINDEX(c1,c2) returns the adjusted Rand index,
% the unadjusted Rand index, "Mirkin's" index and "Hubert's" index.
%
% See L. Hubert and P. Arabie (1985) "Comparing Partitions" Journal of
% Classification 2:193-218
% =========================================================================
%(C) David Corney (2000) [email protected]
% =========================================================================
if nargin < 2 | min(size(c1)) > 1 | min(size(c2)) > 1
error('RandIndex: Requires two vector arguments')
return
end
C=Contingency(c1,c2); %form contingency matrix
n=sum(sum(C));
nis=sum(sum(C,2).^2); %sum of squares of sums of rows
njs=sum(sum(C,1).^2); %sum of squares of sums of columns
t1=nchoosek(n,2); %total number of pairs of entities
t2=sum(sum(C.^2)); %sum over rows & columnns of nij^2
t3=.5*(nis+njs);
%Expected index (for adjustment)
nc=(n*(n^2+1)-(n+1)*nis-(n+1)*njs+2*(nis*njs)/n)/(2*(n-1));
A=t1+t2-t3; %no. agreements
D= -t2+t3; %no. disagreements
if t1==nc
AR=0; %avoid division by zero; if k=1, define Rand = 0
else
AR=(A-nc)/(t1-nc); %adjusted Rand - Hubert & Arabie 1985
end
RI=A/t1; %Rand 1971 %Probability of agreement
MI=D/t1; %Mirkin 1970 %p(disagreement)
HI=(A-D)/t1; %Hubert 1977 %p(agree)-p(disagree)
function Cont=Contingency(Mem1,Mem2)
if nargin < 2 | min(size(Mem1)) > 1 | min(size(Mem2)) > 1
error('Contingency: Requires two vector arguments')
return
end
Cont=zeros(max(Mem1),max(Mem2));
for i = 1:length(Mem1);
Cont(Mem1(i),Mem2(i))=Cont(Mem1(i),Mem2(i))+1;
end
function NMImax = NMImax(x, y)
% Compute nomalized mutual information I(x,y)/sqrt(H(x)*H(y)).
% Written by Michael Chen ([email protected]).
% Modified by Nejc Ilc (log2 -> log).
assert(numel(x) == numel(y));
n = numel(x);
x = reshape(x,1,n);
y = reshape(y,1,n);
l = min(min(x),min(y));
x = x-l+1;
y = y-l+1;
k = max(max(x),max(y));
idx = 1:n;
Mx = sparse(idx,x,1,n,k,n);
My = sparse(idx,y,1,n,k,n);
Pxy = nonzeros(Mx'*My/n); %joint distribution of x and y
Hxy = -dot(Pxy,log(Pxy+eps));
Px = mean(Mx,1);
Py = mean(My,1);
% entropy of Py and Px
Hx = -dot(Px,log(Px+eps));
Hy = -dot(Py,log(Py+eps));
% mutual information
MI = Hx + Hy - Hxy;
% maximum normalized mutual information
NMImax = MI/max(Hx,Hy);