-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSMCMB_paralleled.m
651 lines (574 loc) · 20.8 KB
/
SMCMB_paralleled.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% This is a demo for the SMCMB (Scalable Multi-view Clustering via Many %
% Bipartite Graphs) algorithm, which is presented in the following paper. %
% %
% Jinghuan Lao, Dong Huang, Chang-Dong Wang, Jian-Huang Lai. %
% Towards Scalable Multi-view Clustering via Joint Learning of Many %
% Bipartite Graphs. IEEE Transactions on Big Data, 2023. %
% %
% Latest version: https://github.com/huangdonghere/SMCMB %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function label = SMCMB_paralleled(X, K, m, q, beta)
% Use "parfor" command to parallelize some computations.
warning('off');
V= length(X);
N = size(X{1},1);
% Get anchor sets
disp('.');
disp('Generating diversified anchor sets...');
disp('.');
for i = 1 : V
disp('.');
disp(['Get ',num2str(m) ' anchor sets for the ',num2str(i),'-th view:']);
disp('.');
for j=1:m
tic1 = tic;
subN = min(10000,N);
randIdx= randsample(size(X{i},1), subN);
subX = X{i}(randIdx, :);
[~, orgH ] = litekmeans(subX, q, 'MaxIter', 20,'Replicates',2,'Distance','sqeuclidean');
if sum(sum(isnan(orgH))) >0
nanRow = find(isnan(orgH(:,1)));
orgH(nanRow ,:) = [];
end
A{(i-1)*m+j} = orgH;
toc(tic1);
end
end
disp('Done.');
% Get the final clustering
[label] = getCl(X,K,A,m,beta);
clear X A;
function [labels] = getCl(X,kY,A,m,alpha)
% Get bipartite graph set: \mathcal{B}
B = getBSet(X,kY,A,m,alpha);
clear X Y H;
% Get baseCls set
baseCls = getBCls(B,kY);
clear B;
disp(['Fusing base clusterings...']);
tic1 = tic;
labels = consensusFunction(baseCls,kY);
toc(tic1);
disp('Done.');
function labels = consensusFunction(baseCls,k,maxTcutKmIters,cntTcutKmReps)
% Combine the M base clusterings in baseCls to obtain the final clustering
% result (with k clusters).
if nargin < 4
cntTcutKmReps = 3;
end
if nargin < 3
maxTcutKmIters = 100; % maxTcutKmIters and cntTcutKmReps are used to limit the iterations of the k-means discretization in Tcut.
end
[N,M] = size(baseCls);
maxCls = max(baseCls);
for i = 1:numel(maxCls)-1
maxCls(i+1) = maxCls(i+1)+maxCls(i);
end
cntCls = maxCls(end);
baseCls(:,2:end) = baseCls(:,2:end) + repmat(maxCls(1:end-1),N,1); clear maxCls
% Build the bipartite graph.
B=sparse(repmat([1:N]',1,M),baseCls(:),1,N,cntCls); clear baseCls
colB = sum(B);
B(:,colB==0) = [];
% Cut the bipartite graph.
labels = Tcut_for_bipartite_graph(B,k,maxTcutKmIters,cntTcutKmReps);
function Label = getBCls(S, tcutK)
n = size(S{1},2);
nBCls = length(S);
Label = zeros(n, nBCls);
% ky = length(unique(Y));
disp(['Partitioning ', num2str(nBCls),' bipartite graphs to build base clusterings...']);
parfor i = 1:nBCls
tic1 = tic;
try
Label(:,i) = Tcut_for_bipartite_graph(S{i}',tcutK,50,2);
catch
tmpTcut = length(unique(S{i}(:,1)));
Label(:,i) = Tcut_for_bipartite_graph(S{i}',tmpTcut,50,2);
end
toc(tic1);
end
disp('Done.');
function S = getBSet(X,k,H,m,beta)
X = X';
nv= length(X);
num=size(X{1},1);
S = cell( 1, m*nv);
options = optimset( 'Algorithm','interior-point-convex','Display','off');
disp('.');
disp(['Learning ', num2str(nv*m),' bipartite graphs...']);
disp('.');
for j=1: nv*m
tic1 = tic;
[r,~]=size(H{j});
A=2*beta*eye(r)+2*H{j}*H{j}';
A=(A+A')/2;
nbV = fix( (j-1)/m + 1) ;
B=X{nbV}';
parfor ji=1:num
ff=-2*B(:,ji)'*H{j}';
Z(:,ji)=quadprog(A,ff',[],[],ones(1,r),1,zeros(r,1),ones(r,1),[],options);
end
S{j}=Z;
clear Z;
toc(tic1);
end
disp('Done.');
function [label, center, bCon, sumD, D] = litekmeans(X, k, varargin)
%LITEKMEANS K-means clustering, accelerated by matlab matrix operations.
%
% label = LITEKMEANS(X, K) partitions the points in the N-by-P data matrix
% X into K clusters. This partition minimizes the sum, over all
% clusters, of the within-cluster sums of point-to-cluster-centroid
% distances. Rows of X correspond to points, columns correspond to
% variables. KMEANS returns an N-by-1 vector label containing the
% cluster indices of each point.
%
% [label, center] = LITEKMEANS(X, K) returns the K cluster centroid
% locations in the K-by-P matrix center.
%
% [label, center, bCon] = LITEKMEANS(X, K) returns the bool value bCon to
% indicate whether the iteration is converged.
%
% [label, center, bCon, SUMD] = LITEKMEANS(X, K) returns the
% within-cluster sums of point-to-centroid distances in the 1-by-K vector
% sumD.
%
% [label, center, bCon, SUMD, D] = LITEKMEANS(X, K) returns
% distances from each point to every centroid in the N-by-K matrix D.
%
% [ ... ] = LITEKMEANS(..., 'PARAM1',val1, 'PARAM2',val2, ...) specifies
% optional parameter name/value pairs to control the iterative algorithm
% used by KMEANS. Parameters are:
%
% 'Distance' - Distance measure, in P-dimensional space, that KMEANS
% should minimize with respect to. Choices are:
% {'sqEuclidean'} - Squared Euclidean distance (the default)
% 'cosine' - One minus the cosine of the included angle
% between points (treated as vectors). Each
% row of X SHOULD be normalized to unit. If
% the intial center matrix is provided, it
% SHOULD also be normalized.
%
% 'Start' - Method used to choose initial cluster centroid positions,
% sometimes known as "seeds". Choices are:
% {'sample'} - Select K observations from X at random (the default)
% 'cluster' - Perform preliminary clustering phase on random 10%
% subsample of X. This preliminary phase is itself
% initialized using 'sample'. An additional parameter
% clusterMaxIter can be used to control the maximum
% number of iterations in each preliminary clustering
% problem.
% matrix - A K-by-P matrix of starting locations; or a K-by-1
% indicate vector indicating which K points in X
% should be used as the initial center. In this case,
% you can pass in [] for K, and KMEANS infers K from
% the first dimension of the matrix.
%
% 'MaxIter' - Maximum number of iterations allowed. Default is 100.
%
% 'Replicates' - Number of times to repeat the clustering, each with a
% new set of initial centroids. Default is 1. If the
% initial centroids are provided, the replicate will be
% automatically set to be 1.
%
% 'clusterMaxIter' - Only useful when 'Start' is 'cluster'. Maximum number
% of iterations of the preliminary clustering phase.
% Default is 10.
%
%
% Examples:
%
% fea = rand(500,10);
% [label, center] = litekmeans(fea, 5, 'MaxIter', 50);
%
% fea = rand(500,10);
% [label, center] = litekmeans(fea, 5, 'MaxIter', 50, 'Replicates', 10);
%
% fea = rand(500,10);
% [label, center, bCon, sumD, D] = litekmeans(fea, 5, 'MaxIter', 50);
% TSD = sum(sumD);
%
% fea = rand(500,10);
% initcenter = rand(5,10);
% [label, center] = litekmeans(fea, 5, 'MaxIter', 50, 'Start', initcenter);
%
% fea = rand(500,10);
% idx=randperm(500);
% [label, center] = litekmeans(fea, 5, 'MaxIter', 50, 'Start', idx(1:5));
%
%
% See also KMEANS
%
% [Cite] Deng Cai, "Litekmeans: the fastest matlab implementation of
% kmeans," Available at:
% http://www.zjucadcg.cn/dengcai/Data/Clustering.html, 2011.
%
% version 2.0 --December/2011
% version 1.0 --November/2011
%
% Written by Deng Cai (dengcai AT gmail.com)
if nargin < 2
error('litekmeans:TooFewInputs','At least two input arguments required.');
end
[n, p] = size(X);
pnames = { 'distance' 'start' 'maxiter' 'replicates' 'onlinephase' 'clustermaxiter'};
dflts = {'sqeuclidean' 'sample' [] [] 'off' [] };
[eid,errmsg,distance,start,maxit,reps,online,clustermaxit] = getargs(pnames, dflts, varargin{:});
if ~isempty(eid)
error(sprintf('litekmeans:%s',eid),errmsg);
end
if ischar(distance)
distNames = {'sqeuclidean','cosine'};
j = strcmpi(distance, distNames);
j = find(j);
if length(j) > 1
error('litekmeans:AmbiguousDistance', ...
'Ambiguous ''Distance'' parameter value: %s.', distance);
elseif isempty(j)
error('litekmeans:UnknownDistance', ...
'Unknown ''Distance'' parameter value: %s.', distance);
end
distance = distNames{j};
else
error('litekmeans:InvalidDistance', ...
'The ''Distance'' parameter value must be a string.');
end
center = [];
if ischar(start)
startNames = {'sample','cluster'};
j = find(strncmpi(start,startNames,length(start)));
if length(j) > 1
error(message('litekmeans:AmbiguousStart', start));
elseif isempty(j)
error(message('litekmeans:UnknownStart', start));
elseif isempty(k)
error('litekmeans:MissingK', ...
'You must specify the number of clusters, K.');
end
if j == 2
if floor(.1*n) < 5*k
j = 1;
end
end
start = startNames{j};
elseif isnumeric(start)
if size(start,2) == p
center = start;
elseif (size(start,2) == 1 || size(start,1) == 1)
center = X(start,:);
else
error('litekmeans:MisshapedStart', ...
'The ''Start'' matrix must have the same number of columns as X.');
end
if isempty(k)
k = size(center,1);
elseif (k ~= size(center,1))
error('litekmeans:MisshapedStart', ...
'The ''Start'' matrix must have K rows.');
end
start = 'numeric';
else
error('litekmeans:InvalidStart', ...
'The ''Start'' parameter value must be a string or a numeric matrix or array.');
end
% The maximum iteration number is default 100
if isempty(maxit)
maxit = 100;
end
% The maximum iteration number for preliminary clustering phase on random
% 10% subsamples is default 10
if isempty(clustermaxit)
clustermaxit = 10;
end
% Assume one replicate
if isempty(reps) || ~isempty(center)
reps = 1;
end
if ~(isscalar(k) && isnumeric(k) && isreal(k) && k > 0 && (round(k)==k))
error('litekmeans:InvalidK', ...
'X must be a positive integer value.');
elseif n < k
error('litekmeans:TooManyClusters', ...
'X must have more rows than the number of clusters.');
end
bestlabel = [];
sumD = zeros(1,k);
bCon = false;
for t=1:reps
switch start
case 'sample'
center = X(randsample(n,k),:);
case 'cluster'
Xsubset = X(randsample(n,floor(.1*n)),:);
[dump, center] = litekmeans(Xsubset, k, varargin{:}, 'start','sample', 'replicates',1 ,'MaxIter',clustermaxit);
case 'numeric'
end
last = 0;label=1;
it=0;
switch distance
case 'sqeuclidean'
while any(label ~= last) && it<maxit
last = label;
bb = full(sum(center.*center,2)');
ab = full(X*center');
D = bb(ones(1,n),:) - 2*ab;
[val,label] = min(D,[],2); % assign samples to the nearest centers
ll = unique(label);
if length(ll) < k
%disp([num2str(k-length(ll)),' clusters dropped at iter ',num2str(it)]);
missCluster = 1:k;
missCluster(ll) = [];
missNum = length(missCluster);
aa = sum(X.*X,2);
val = aa + val;
[dump,idx] = sort(val,1,'descend');
label(idx(1:missNum)) = missCluster;
end
E = sparse(1:n,label,1,n,k,n); % transform label into indicator matrix
center = full((E*spdiags(1./sum(E,1)',0,k,k))'*X); % compute center of each cluster
it=it+1;
end
if it<maxit
bCon = true;
end
if isempty(bestlabel)
bestlabel = label;
bestcenter = center;
if reps>1
if it>=maxit
aa = full(sum(X.*X,2));
bb = full(sum(center.*center,2));
ab = full(X*center');
D = bsxfun(@plus,aa,bb') - 2*ab;
D(D<0) = 0;
else
aa = full(sum(X.*X,2));
D = aa(:,ones(1,k)) + D;
D(D<0) = 0;
end
D = sqrt(D);
for j = 1:k
sumD(j) = sum(D(label==j,j));
end
bestsumD = sumD;
bestD = D;
end
else
if it>=maxit
aa = full(sum(X.*X,2));
bb = full(sum(center.*center,2));
ab = full(X*center');
D = bsxfun(@plus,aa,bb') - 2*ab;
D(D<0) = 0;
else
aa = full(sum(X.*X,2));
D = aa(:,ones(1,k)) + D;
D(D<0) = 0;
end
D = sqrt(D);
for j = 1:k
sumD(j) = sum(D(label==j,j));
end
if sum(sumD) < sum(bestsumD)
bestlabel = label;
bestcenter = center;
bestsumD = sumD;
bestD = D;
end
end
case 'cosine'
while any(label ~= last) && it<maxit
last = label;
W=full(X*center');
[val,label] = max(W,[],2); % assign samples to the nearest centers
ll = unique(label);
if length(ll) < k
missCluster = 1:k;
missCluster(ll) = [];
missNum = length(missCluster);
[dump,idx] = sort(val);
label(idx(1:missNum)) = missCluster;
end
E = sparse(1:n,label,1,n,k,n); % transform label into indicator matrix
center = full((E*spdiags(1./sum(E,1)',0,k,k))'*X); % compute center of each cluster
centernorm = sqrt(sum(center.^2, 2));
center = center ./ centernorm(:,ones(1,p));
it=it+1;
end
if it<maxit
bCon = true;
end
if isempty(bestlabel)
bestlabel = label;
bestcenter = center;
if reps>1
if any(label ~= last)
W=full(X*center');
end
D = 1-W;
for j = 1:k
sumD(j) = sum(D(label==j,j));
end
bestsumD = sumD;
bestD = D;
end
else
if any(label ~= last)
W=full(X*center');
end
D = 1-W;
for j = 1:k
sumD(j) = sum(D(label==j,j));
end
if sum(sumD) < sum(bestsumD)
bestlabel = label;
bestcenter = center;
bestsumD = sumD;
bestD = D;
end
end
end
end
label = bestlabel;
center = bestcenter;
if reps>1
sumD = bestsumD;
D = bestD;
elseif nargout > 3
switch distance
case 'sqeuclidean'
if it>=maxit
aa = full(sum(X.*X,2));
bb = full(sum(center.*center,2));
ab = full(X*center');
D = bsxfun(@plus,aa,bb') - 2*ab;
D(D<0) = 0;
else
aa = full(sum(X.*X,2));
D = aa(:,ones(1,k)) + D;
D(D<0) = 0;
end
D = sqrt(D);
case 'cosine'
if it>=maxit
W=full(X*center');
end
D = 1-W;
end
for j = 1:k
sumD(j) = sum(D(label==j,j));
end
end
function [eid,emsg,varargout]=getargs(pnames,dflts,varargin)
%GETARGS Process parameter name/value pairs
% [EID,EMSG,A,B,...]=GETARGS(PNAMES,DFLTS,'NAME1',VAL1,'NAME2',VAL2,...)
% accepts a cell array PNAMES of valid parameter names, a cell array
% DFLTS of default values for the parameters named in PNAMES, and
% additional parameter name/value pairs. Returns parameter values A,B,...
% in the same order as the names in PNAMES. Outputs corresponding to
% entries in PNAMES that are not specified in the name/value pairs are
% set to the corresponding value from DFLTS. If nargout is equal to
% length(PNAMES)+1, then unrecognized name/value pairs are an error. If
% nargout is equal to length(PNAMES)+2, then all unrecognized name/value
% pairs are returned in a single cell array following any other outputs.
%
% EID and EMSG are empty if the arguments are valid. If an error occurs,
% EMSG is the text of an error message and EID is the final component
% of an error message id. GETARGS does not actually throw any errors,
% but rather returns EID and EMSG so that the caller may throw the error.
% Outputs will be partially processed after an error occurs.
%
% This utility can be used for processing name/value pair arguments.
%
% Example:
% pnames = {'color' 'linestyle', 'linewidth'}
% dflts = { 'r' '_' '1'}
% varargin = {{'linew' 2 'nonesuch' [1 2 3] 'linestyle' ':'}
% [eid,emsg,c,ls,lw] = statgetargs(pnames,dflts,varargin{:}) % error
% [eid,emsg,c,ls,lw,ur] = statgetargs(pnames,dflts,varargin{:}) % ok
% We always create (nparams+2) outputs:
% one each for emsg and eid
% nparams varargs for values corresponding to names in pnames
% If they ask for one more (nargout == nparams+3), it's for unrecognized
% names/values
% Original Copyright 1993-2008 The MathWorks, Inc.
% Modified by Deng Cai ([email protected]) 2011.11.27
% Initialize some variables
emsg = '';
eid = '';
nparams = length(pnames);
varargout = dflts;
unrecog = {};
nargs = length(varargin);
% Must have name/value pairs
if mod(nargs,2)~=0
eid = 'WrongNumberArgs';
emsg = 'Wrong number of arguments.';
else
% Process name/value pairs
for j=1:2:nargs
pname = varargin{j};
if ~ischar(pname)
eid = 'BadParamName';
emsg = 'Parameter name must be text.';
break;
end
i = strcmpi(pname,pnames);
i = find(i);
if isempty(i)
% if they've asked to get back unrecognized names/values, add this
% one to the list
if nargout > nparams+2
unrecog((end+1):(end+2)) = {varargin{j} varargin{j+1}};
% otherwise, it's an error
else
eid = 'BadParamName';
emsg = sprintf('Invalid parameter name: %s.',pname);
break;
end
elseif length(i)>1
eid = 'BadParamName';
emsg = sprintf('Ambiguous parameter name: %s.',pname);
break;
else
varargout{i} = varargin{j+1};
end
end
end
varargout{nparams+1} = unrecog;
function labels = Tcut_for_bipartite_graph(B,Nseg,maxKmIters,cntReps)
% B - |X|-by-|Y|, cross-affinity-matrix
if nargin < 4
cntReps = 3;
end
if nargin < 3
maxKmIters = 100;
end
[Nx,Ny] = size(B);
if Ny < Nseg
error('Need more columns!');
end
dx = sum(B,2);
dx(dx==0) = 1e-10; % Just to make 1./dx feasible.
Dx = sparse(1:Nx,1:Nx,1./dx); clear dx
Wy = B'*Dx*B;
%%% compute Ncut eigenvectors
% normalized affinity matrix
d = sum(Wy,2);
D = sparse(1:Ny,1:Ny,1./sqrt(d)); clear d
nWy = D*Wy*D; clear Wy
nWy = (nWy+nWy')/2;
% computer eigenvectors
[evec,eval] = eig(full(nWy)); clear nWy
[~,idx] = sort(diag(eval),'descend');
Ncut_evec = D*evec(:,idx(1:Nseg)); clear D
%%% compute the Ncut eigenvectors on the entire bipartite graph (transfer!)
evec = Dx * B * Ncut_evec; clear B Dx Ncut_evec
% normalize each row to unit norm
evec = bsxfun( @rdivide, evec, sqrt(sum(evec.*evec,2)) + 1e-10 );
% k-means
labels = kmeans(evec,Nseg,'MaxIter',maxKmIters,'Replicates',cntReps);