-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpixelToWorld.py
70 lines (56 loc) · 2.11 KB
/
pixelToWorld.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import rospy
import math
import tf
import transformations
import numpy as np
import camera_calib_BMW as camCalib
def pixelToWorld(u, v, z):
# u, v are x, y coord in pixel frame respectively, z is the height of the camera above the table
rospy.init_node('Sawyer_wrist_cam_tf_listener')
listener = tf.TransformListener()
rate = rospy.Rate(10.0)
while not rospy.is_shutdown():
try:
(trans, rot) = listener.lookupTransform('/base', '/right_gripper_base', rospy.Time(0))
# print('trans is', trans)
# print('rot is', rot)
except (tf.LookupException, tf.ConnectivityException, tf.ExtrapolationException):
continue
if trans is None:
continue
else:
break
rate.sleep()
trans = np.array(trans)
trans.shape = (3, 1)
# print(trans)
hom_Mtrx_g_b = transformations.quaternion_matrix(rot)
hom_Mtrx_g_b[0][3] = trans[0]
hom_Mtrx_g_b[1][3] = trans[1]
hom_Mtrx_g_b[2][3] = trans[2]
# print("homogeneous transformation from /gripper_base to /base is:")
# print(hom_Mtrx_g_b)
hom_Mtrx_c_g = transformations.rotation_matrix(-math.pi / 2.0, [0, 0, 1], [0, 0, 0])
hom_Mtrx_c_g[0][3] = 0.05
# print("homogeneous transformation from /camera to /gripper_base is:")
# print(hom_Mtrx_c_g)
hom_Mtrx_c_b = np.dot(hom_Mtrx_g_b, hom_Mtrx_c_g)
# print("homogeneous transformation from /camera to /base is:")
# print(hom_Mtrx_c_b)
Mtrx_c_b = hom_Mtrx_c_b[:3, :4]
Mtrx_c_b = np.matrix(Mtrx_c_b)
# print("transformation from /camera to /gripper_base is:")
# print(Mtrx_c_b)
camMtrx = camCalib.getCamMatrx()
camMtrxInv = np.linalg.inv(camMtrx)
camMtrxInv = np.matrix(camMtrxInv)
# z = 0.5 # height of camera above the table
pixVec = np.matrix([[z * u], [z * v], [z * 1]]) # pixel vector augmented by 1
# testVec = camMtrxInv*z*pixVec
one = np.array([1])
one.shape = (1, 1)
camVec = np.concatenate((camMtrxInv * pixVec, one), axis=0)
worldVec = Mtrx_c_b * camVec
# print(camVec)
# print(Mtrx_c_b * camVec)
return worldVec