-
Notifications
You must be signed in to change notification settings - Fork 2
/
ModelPredictiveReb.m
327 lines (269 loc) · 9.72 KB
/
ModelPredictiveReb.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
function [rebalanceQueue]=ModelPredictiveReb(RoadNetwork,RebWeight,Passengers,Flags)
% Taken from AMoD-power:TIBalancedPowerFlow and edited as needed.
% Function to solve time-invariant AMoD routing and rebalancing with
% charging
% Syntax: [cplex_out]=SolveOscarrBattery(RoadGraph,RoadCap,TravelTimes,ChargeReqs,ChargerTimes,C,RebWeight,Sources,Sinks,FlowsIn,PowerGraph,PowerLineCap,PowerLineResistance,PowerGensList,PowerGensMax,PowerGensMin,PowerCosts,PowerExtLoads,RoadToPowerMap,PowerToRoadMap,milpflag,congrelaxflag,sourcerelaxflag,cachedAeqflag)
% Inputs:
% * Inside RoadNetwork
% - RoadGraph, a nx1 cell structure. RoadGraph{i} contains the neighbors of
% i in the road graph
% - RoadCap, a nxn matrix. RoadCap(i,j) is the capacity of the i-j link
% (in vehicles per unit time).
% - TravelTimes, a nxn matrix. TravelTimes(i,j) is the travel time along
% the i-j link.
% - ChargeReqs, a nxn matrix. ChargeReqs(i,j) is the amount of (quantized)
% units of charge required to travel from i to j.
% - ChargerTimes, a nx1 matrix. ChargerTimes(i) is the time required to
% charge by one unit charge at node i.
% - C, a scalar. The overall number of charge levels.
% - ChargerCaps, nx1 vector. ChargerCaps(i) returns the capacity of the charger at node i
% * RebWeight, the relative importance of the rebalancing cost wrt the
% customer cost
% * Inside Passengers
% - Sources, a S-x-1 vector. Sources(i) is the ith source node
% - Sinks, Sx1 cell structure. Sinks{i} contains the sinks of the classes that begin at Source(i)
% - FlowsIn, a m-by-1 cell array with flows of class i. FlowsIn{i}(j) is the amount of (vehicle) flow
% entering the source i in class j.
% * Inside Flags
% - milpflag (default: 1). If 1, the vehicle routing problem is solved as a
% MILP. If 0, the problem is solved as a linear relaxation.
% - congrelaxflag (default: 0). If this flag is on, then vehicle flows are
% allowed to violate the congestion constraint for a cost.
% A slack variable is defined for each edge. The cost is defined in the
% main code.
% - sourcerelaxflag (default: 0). %If this flag is on, each vehicle flow is
% allowed to reduce its sources (and sinks) for a cost. This is
% especially useful when it is not possible to compute a satisfying
% rebalancing flow because of timing constraints but, if the congestion
% constraints are tight, it can also preserve feasibility if not all
% flows can be realized. A slack variable is defined for each source and sink.
%% Unpack things
T=RoadNetwork.T;
RoadGraph=RoadNetwork.RoadGraph;
TravelTimes=RoadNetwork.TravelTimes;
Starters=RoadNetwork.Starters; % Starters(i) gives the number of available vehs at t=1
FlowsIn=Passengers.FlowsIn;
FlowsOut = Passengers.FlowsOut;
milpflag=Flags.milpflag;
congrelaxflag=Flags.congrelaxflag;
sourcerelaxflag=Flags.sourcerelaxflag;
cachedAeqflag=Flags.cachedAeqflag;
%% Utilities
debugflag=1; %Makes output verbose
DIAGNOSTIC_FLAG=0; % Diagnoses state allocation. Useful for initial debugging.
%CongestionCost=1e3; %The cost of violating the congestion constraint
SourceRelaxCost=1e6; % The cost of dropping a source or sink altogether
WaitTimeCost = 10; %The cost per unit of time of letting a starter wait.
%Clean up road graph.
for i=1:length(RoadGraph)
RoadGraph{i}=sort(unique(RoadGraph{i}));
end
%Nodes in ReverseRoadGraph{i} are such that RoadGraph{ReverseRoadGraph{i}} contains
%i
ReverseRoadGraph=cell(size(RoadGraph));
for i=1:length(RoadGraph)
for j=RoadGraph{i}
ReverseRoadGraph{j}=[ReverseRoadGraph{j} i];
end
end
for i=1:length(ReverseRoadGraph)
ReverseRoadGraph{i}=sort(unique(ReverseRoadGraph{i}));
end
%Nodes in ReversePowerGraph{i} are such that PowerGraph{ReversePowerGraph{i}} contains
%i
N=length(RoadGraph);
M=1;
S = N;
E=0;
NumRoadEdges=zeros(N,1);
for i=1:N
NumRoadEdges(i)=length(RoadGraph{i});
E=E+length(RoadGraph{i});
end
cumRoadNeighbors=cumsum(NumRoadEdges);
cumRoadNeighbors=[0;cumRoadNeighbors(1:end-1)];
RoadNeighborCounter=sparse([],[],[],N,N,E);
TempNeighVec=zeros(N,1);
for i=1:N
for j=RoadGraph{i}
TempNeighVec(j)=1;
end
NeighCounterLine=cumsum(TempNeighVec);
for j=RoadGraph{i}
RoadNeighborCounter(i,j)=NeighCounterLine(j);
end
TempNeighVec=zeros(N,1);
end
% Rearranging for sinks
%NumSinksPerSource=zeros(size(Sources));
%for i=1:length(Sources)
% NumSinksPerSource(i)=length(Sinks{i});
%end
%CumNumSinksPerSource=cumsum(NumSinksPerSource);
%TotNumSinks=CumNumSinksPerSource(end);
%CumNumSinksPerSource=[0; CumNumSinksPerSource(1:end-1)];
StateSize= E*(T-1) + (T-1)*S + T*N;
numFlowVariables = E*(T-1);
if debugflag
fprintf('State size: %d, of which %d are flow variables \n',StateSize, numFlowVariables)
end
FindRoadLinkRtij= @(t,i,j) (t-1)*E + cumRoadNeighbors(i) + RoadNeighborCounter(i,j);
FindSourceRelaxti= @(t,i) (T-1)*E + (t-1)*S + i;
FindStarterTimeti= @(t,i) E*(T-1) + (T-1)*S + (t-1)*S + i;
%FindStartRi= @(i) T*E + i;
%FindBreaksRi= @(i) T*E + S + i;
%% COST
if debugflag
fprintf('Building cost: travel time...')
end
f_cost=zeros(StateSize,1);
% rebalancers' travel time
for i=1:N
for j=RoadGraph{i}
for t=1:(T-1)
if i ~= j
f_cost(FindRoadLinkRtij(t,i,j))= RebWeight*TravelTimes(i,j); %
else
f_cost(FindRoadLinkRtij(t,i,j))= TravelTimes(i,j);
end
end
end
for t=1:T-1
f_cost(FindSourceRelaxti(t,i)) = SourceRelaxCost*( 1 / (1.2 ^ (t-1)) );
f_cost(FindStarterTimeti(t,i)) = WaitTimeCost*t;
end
end
%% INITIALIZING CONSTRAINTS
if (debugflag)
disp('Initializing constraints')
end
n_eq_constr = N*(T-1) + N;
n_eq_entries = 2*E*(T-1) + S*(T-1);
if sourcerelaxflag
n_eq_entries=n_eq_entries+S*(T-1);
end
Aeqsparse=zeros(n_eq_entries,3);
Beq=zeros(n_eq_constr,1);
Aeqrow=1;
Aeqentry=1;
% Vehicles: E inequality constraints, one per road. Each inequality
% constraint has (M+1)*C + 1 entries one per flow per charge level, incl. reb. and one for the
% relaxation.
if debugflag
fprintf('Building LP program with statesize %d,%d equality constraints with %d entries', ...
StateSize,n_eq_constr, n_eq_entries)
end
%% EQUALITY CONSTRAINTS
if (debugflag)
disp('Building sparse equality constraints...')
end
% Conservation of rebalancers
if debugflag
disp('Building road map for rebalancers')
fprintf('Time step: ')
end
% we want the remaining vehicles to be evenly distributed
vdesired = max(floor((sum(Starters) + sum(sum(FlowsIn)) - sum(sum(FlowsOut))) / S), 0);
Breakers = zeros(S,1);
Breakers(1:end) = vdesired;
for t=1:T-1
if debugflag
fprintf(' %d/%d ',t,T)
end
for i=1:N
if ~isempty(RoadGraph{i})
for j=RoadGraph{i} %Out-flows
if (TravelTimes(i,j)+t<=T)
Aeqsparse(Aeqentry,:)=[Aeqrow,FindRoadLinkRtij(t,i,j), 1];
Aeqentry=Aeqentry+1;
end
end
end
if ~isempty(ReverseRoadGraph{i})
for j=ReverseRoadGraph{i} %In-flows
if (TravelTimes(j,i) < t)
Aeqsparse(Aeqentry,:)=[Aeqrow,FindRoadLinkRtij(t - TravelTimes(j,i),j,i),-1];
Aeqentry=Aeqentry+1;
end
end
end
%Starters
Aeqsparse(Aeqentry,:)=[Aeqrow,FindStarterTimeti(t,i), -1];
Aeqentry=Aeqentry+1;
if sourcerelaxflag
Aeqsparse(Aeqentry,:)=[Aeqrow,FindSourceRelaxti(t,i),-1];
Aeqentry=Aeqentry+1;
end
if t==1
%Beq(Aeqrow)= Starters(i) + FlowsIn(t,i) - FlowsOut(t,i);
Beq(Aeqrow)= FlowsIn(t,i) - FlowsOut(t,i);
elseif t == T-1
Beq(Aeqrow)= FlowsIn(t,i) - FlowsOut(t,i) - Breakers(i);
else
Beq(Aeqrow)= FlowsIn(t,i) - FlowsOut(t,i);
end
Aeqrow=Aeqrow+1;
end
end
for i=1:S
for t=1:T-1
Aeqsparse(Aeqentry,:)=[Aeqrow,FindStarterTimeti(t,i), 1];
Aeqentry=Aeqentry+1;
end
Beq(Aeqrow)= Starters(i);
Aeqrow=Aeqrow+1;
end
if debugflag
disp('Done! Now moving to inequalities...')
end
%% INEQUALITY CONSTRAINTS
if debugflag
disp('Building sparse inequality constraints...')
end
%% Make equality and inequality matrices
if Aeqrow-1~=n_eq_constr
fprintf('ERROR: unexpected number of equality constraints (expected: %d, actual: %d)\n',n_eq_constr,Aeqrow-1)
end
if Aeqentry-1~=n_eq_entries
fprintf('Warning: unexpected number of equality entries (expected: %d, actual: %d)\n',n_eq_entries,Aeqentry-1)
end
if (debugflag)
disp('Building matrices from sparse representation')
end
Aeqsparse=Aeqsparse(1:Aeqentry-1,:);
Aeq=sparse(Aeqsparse(:,1),Aeqsparse(:,2),Aeqsparse(:,3), Aeqrow-1, StateSize);
%% Upper and lower bounds
if (debugflag)
disp('Building upper and lower bounds')
end
lb=zeros(StateSize,1); %Passenger and rebalancing flows, passenger sources and sinks,...
% generator loads, phase angles, slack variables can't be negative
ub=Inf*ones(StateSize,1); %Why not? We enforce capacity separately
%% Call optimizer
if (debugflag)
disp('Calling optimizer')
end
tic
options = cplexoptimset('Display', 'on');% 'Algorithm', 'interior-point');
%options = cplexoptimset('Display', 'on', 'Algorithm', 'interior-point');
%options.barrier.crossover = -1;
%options.barrier.limits.objrange = 1e50;
[cplex_out,fval,exitflag,output]=cplexlp(f_cost,[],[],Aeq,Beq,lb,ub,[],options) ;
toc
if (debugflag)
fprintf('Solved! fval: %f\n', fval)
disp(output)
%fval
%exitflag
%output
end
rebalanceQueue = cell(S,1);
for i = 1:S
for j = 1:S
if i ~= j
for k = 1:cplex_out(FindRoadLinkRtij(1,i,j))
rebalanceQueue{i} = [rebalanceQueue{i} j];
end
end
end
end